Документ подписан простой электронной подписью Информация о владельце:

ФИО: Лужанин Владимий в РЕРЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: Ректор Дата подписания 14-02/25 сударственное бюджетное образовательное учреждение высшего образования Уникальный программный ключ:«Пермская государственная фармацевтическая академия» d56ba45a9b6e5c64a319e2c5ae3bb1\10004\1000

Кафедра общей и органической химии

(наименование кафедры)

УТВЕРЖДЕНА решением кафедры Протокол от «03» июня 2025 г. № 9

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Б1.О.05 Химия общая и неорганическая

(индекс, наименование дисциплины)

Б1.О.05 Неорг. х

(индекс, краткое наименование дисциплины)

19.03.01 Биотехнология

(код, наименование направления подготовки (специальности)

Фармацевтическая биотехнология

(направленность(и) (профиль (и)/специализация(ии)

Бакалавр

(квалификация)

Очная

(форма(ы) обучения)

4 года

(нормативный срок обучения)

Год набора — 2026

Пермь, 2025

Автор(ы)-составитель(и):
докт. фармацевт. наук, доцент кафедры общей и органической химии Касимова Н.Н.
Заведующий кафедрой общей и органической химии д-р хим. наук, профессор Гейн В.Л.
заведующий кафедрой общей и органической химий д-р хим. наук, профессор т син Б.Л.

СОДЕРЖАНИЕ

1.	перечень планируемых результатов обучения по дисциплине, соотнесенных с пла-	
	нируемыми результатами ОПОП ВО	4
2.	Объем и место дисциплины в структуре ОПОП ВО	4
3.	Содержание и структура дисциплины	5
4.	Фонд оценочных средств по дисциплине	7
5.	Методические указания по освоению дисциплины	12
6.	Учебная литература для обучающихся по дисциплине	12
7.	Материально-техническая база, информационные технологии, программное обеспе-	
	чение и информационные справочные системы	13

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами ОПОП ВО

TC		Код индика-	Наименование	Результаты обучения,
Код	Наименование ком-	тора дости-	индикатора до-	соотнесенные с индика-
компе-	петенции	жения ком-	стижения компе-	торами достижения ком-
тенции		петенции	тенции	петенций
ОПК -1	Способен изучать,	ИДОПК-1.3	Владеет и исполь-	На уровне умений:
	анализировать, ис-		зует в своей про-	- Умеет рассчитывать теп-
	пользовать биологи-		фессиональной де-	ловые эффекты химиче-
	ческие объекты и		ятельности знания	ских процессов; составлять
	процессы, основыва-		законов и законо-	электронные конфигура-
	ясь на законах и зако-		мерностей химиче-	ции атомов, ионов, опре-
	номерностях матема-		ских наук	делять тип хим. связи;
	тических, физических,			смещать равновесия в рас-
	химических и биоло-			творах электролитов.
	гических наук и их			– умеет проводить про-
	взаимосвязях			стейшие химические экс-
				перименты, работать с хи-
				мической посудой, опре-
				делять рН растворов при
				помощи индикаторов.
		ИДОПК-1.4	Изучает, анализи-	
				- знает современную мо-
				дель атома,
			=	- имеет представления о
				строении химических со-
				единений и закономерно-
			-	стях протекания реакций;
			гических наук и их	
				свойств простых и слож-
			тематическими,	ных веществ от положения
			физическими и хи-	-
			мическими наука-	ской системе.
			ми.	

2. Объем и место дисциплины в структуре ОПОП ВО

Дисциплина $\underline{61.0.05}$ Химия общая и неорганическая относится к базовой части ОПОП, изучается в 1 семестре 1 курса, общая трудоемкость дисциплины составляет 180 ч. / 5 з. е.

3. Содержание и структура дисциплины

3.1.Структура дисциплины.

	Наименование	Объ	ем дисциплины, ча	с.	Форма теку-	
№ п/п	разделов, тем	Всего	Контактная рабо-	CP	щего кон-	
		часов	та обучающихся с	CI	троля успева-	

			преподавателем по видам учебных занятий				емости*, про- межуточной аттестации		
			Л	ЛЗ	ПЗ				
Очная фор	ма обучения								
Семестр Л	<i>№1</i>								
Раздел 1	Введение	8		4		4	CC	3	
Тема 1.1	Предмет, задачи и методы общей и неорганической химии, ее место в системе естественных наук.					4			
Тема 1.2	Основные законы, положения и понятия. Номенклатура неорганических веществ.	4		4			CC	3	
Раздел 2	Строение вещества	16	4	8		4	CC3, T		
Тема 2.1	Квантовая теория строения атома.		2	4		2	CC3	T**	
Тема 2.2 Теория химической связи.		8	2	4		2	CC3		
Раздел 3	Основные закономерности проте-		4	8		4	CC3	, T	
Тема 3.1	ма 3.1 Энергетика и направление химических реакций.		2	4		2	CC3		
Тема 3.2	Учение о скоростях и механизмах реакций. Химическое равновесие и его смещение.	8	2	4		2	CC3	T**	
Раздел 4	Учение о растворах	28	6	16		6	CC3, OL	13, KP,	
Тема 4.1	Растворы и их свойства. Концентрации растворов. Растворы электролитов.	8	2	4		2	ОПЗ, КР		
Тема 4.2	Химическое равновесие в растворах слабых электролитов. Водородный показатель.	8	2	4		2	ССЗ		
Поведение солей в водных растворах (гидролиз). Протолитическая теория. Гетерогенные равновесия в растворах. Произведение растворимости.		12	2	8		2	CC3	T**	
Раздел 5	Окислительно-восстановительные реакции (OBP)	12	4	4		4	CC3,	КР	
Тема 5.1	OBР и их типы. Уравнивание OBР ионно-электронным методом (метод полуреакций).	7	2	3		2	CC3 KP**		
Тема 5.2	Восстановительные потенциалы и	5	2	1		2	CC3		

	направление ОВР в водных раство-							
	pax							
Раздел 6	Химия комплексных соединений	8	2	4	2	CC3, KP		
Тема 6.1	Химия комплексных соединений	8	2	4	2	CC3,	КР	
Раздел 7	Химия элементов	56	14	24	18	CC3, O	П3, Т	
Тема 7.1	Химия р-элементов. Общая характеристика неметаллов. Галогены.	8	2	4	2	СС3, ОП3		
Тема 7.2 Элементы VIA группы (халькоге- ны)		8	2	4	2	СС3, ОП3	T**	
Тема 7.3 Элементы VA группы 8		8	2	4	2	CC3		
Тема 7.4	Элементы IVA и IIIA групп.	8	2	4	2	CC3		
Тема 7.5 Химия s- и d-элементов. Общая характеристика металлов.		2	2	1		CC3		
Тема 7.6	Элементы VIIБ группы	5		2	2	CC3		
Тема 7.7	Элементы VIIIБ группы.	4	2	1	2	CC3	T**	
Тема 7.8	Элементы VIБ группы.	5	5 2		2	CC3		
Тема 7.9	Элементы ІБ группы.	4		1	2	CC3		
Тема 7.10	Тема 7.10 Элементы IIБ группы.		2	1	2	CC3		
Промежут	очная аттестация	36			Экзамен			
Всего:	сего: 180 34 68 42							

Примечание: * — формы текущего контроля успеваемости: тестирование (Т), контрольная работа (КР), отчет по индивидуальным практическим заданиям (ОПЗ), собеседование по ситуационным задачам (ССЗ). ** — содержит вопросы по данным темам, проводится по изучении последней

3.2. Содержание дисциплины.

Раздел 1. Введение. Тема 1.1 Предмет, задачи и методы общей и неорганической химии. Тема 1.2 Основные законы, положения и понятия химии.

Раздел 2. Строение вещества. Тема 2.1 Строение вещества. Квантовая теория строения атома. Периодический закон Д.И. Менделеева. Квантово-механическая модель строения атома. Электронные и электроно-структурные формулы атомов. Тема 2.2 Теория химической связи.

Раздел 3. Основные закономерности протекания химических реакций. Тема 3.1 Энергетика и направление химических реакций. Тема 3.2 Учение о скоростях и механизмах химических реакций.

Раздел 4. Учение о растворах. Тема 4.1 Растворы и их свойства. Концентрации растворов. Растворы электролитов. Раствор, растворитель, растворенное вещество. Тема 4.2 Химическое равновесие в растворах слабых электролитов. Водородный показатель. Ионизация воды. Ионное произведение воды. Водородный показатель. рН растворов сильных и слабых кислот и оснований. Тема 4.3 Поведение солей в водных растворах (гидролиз).

Раздел 5. Окислительно-восстановительные реакции (OBP). Тема 5.1 Окислительно-восстановительные реакции (OBP) и их типы. Тема 5.2 Восстановительные потенциалы и направление OBP в водных растворах.

Раздел 6. Химия комплексных соединений. Тема 6.1 Химия комплексных соединений.

Раздел 7. Химия элементов. Тема 7.1 Химия р-элементов. Общая характеристика неметаллов. Галогены. Тема 7.2 Элементы VIA группы (халькогены). Тема 7.3 Элементы VA группы. Общая характеристика элементов VA группы. Тема 7.4 Элементы IVA и IIIA групп. Тема 7.5 Химия s- и фэлементов. Тема 7.6 Элементы VIIБ группы. Тема 7.7 Элементы VIIБ группы. Тема 7.8 Элементы VIБ группы. Тема 7.9 Элементы IБ группы. Общая характеристика I Б группы. Тема 7.10 Элементы IIБ группы.

4. Фонд оценочных средств по дисциплине

- 4.1. Формы и материалы текущего контроля.
- 4.1.1. В ходе реализации дисциплины Химия общая и неорганическая используются следующие формы текущего контроля успеваемости обучающихся: тестирование, контрольная работа, отчет по индивидуальным практическим заданиям, собеседование по ситуационным задачам.
- 4.1.2. Материалы текущего контроля успеваемости.

Тест.

Пример для тестирования по темам «Квантовая теория строения атома. Периодический закон Д.И. Менделеева.» и «Теория химической связи»:

Вариант №1

- 1. Электрон заселяет третий квантовый слой, его атомная орбиталь имеет гантелевидную форму. Значения главного и орбитального кв. чисел: a) n=3 l=0 б) n=3 l=1 в) n=3 l=2 г) n=3 l=3
- 2. Какой уровень и подуровень заселяются электронами вслед за 6s? a) 4f б) 5d в) 6p г) 5f
- 3. Укажите группу ионов, которой принадлежит нижеприведённая электронная конфигурация: $1s^22s^22p^63s^23p^6$ а) $Cl^{+1}Ca^{+2}Mn^{+2}$ б) $Cl^{-1}Ca^{+2}Mn^{+7}$ в) $Cl^{+1}Ca^{+2}Mn^{+7}$ г) $Cl^{-1}Ca^{+2}Mn^{+6}$
- 4.Определите местоположение элемента в периодической системе по конфигурации его валентных электронов: 3d⁵ 4s² a) 4 период, 2 группа, главная подгруппа б) 4 период, 7 группа, гл. подгруппа в) 4 период, 7 группа, побочная подгруппа г) 7 период, 4 группа, побочная подгруппа
- 5. Какой порядковый номер имеет элемент, завершающий 7 период? а) 115 б) 116 в) 117 г) 118
- 6. В каких степенях окисления наиболее проявляется сходство элементов главной и побочной подгрупп 7 группы? а) во всех б) в низшей в) в нулевой г) в высшей
- 8. С какой частицей молекула NH_3 может образовать дополнительные связи по донорно-акцепторному механизму? а) H^+ б) CH_4 в) H^- г) Cl_2
- 9. Сколько σ и π -связей в молекуле ацетилена C_2H_2 ? а) 5 и 0 б) 3 и 2 в) 4 и 1 г) 2 и 3
- 10. Атом серы в молекуле SO_2 находится в sp^2 -гибридизации, причём в гибридизации принимает участие одна неподелённая электронная пара. Какую форму имеет молекула?
- а) треугольная б) линейная в) тетраэдрическая г) угловая Контрольная работа.

Пример билета контрольной работы по теме «Растворы и их свойства. Концентрации растворов. Растворы электролитов»:

Вариант 1

1. Рассчитать массу кристаллогидрата $Na_2S_2O_3\cdot 5H_2O$ и объём воды, необходимые для приготовления 250 мл 9% -го раствора ($\rho=1,07$ г/мл)

2. Как приготовить 1 л раствора $KBrO_3$ с $C_f = 0.1$ моль/л, который будет использоваться для проведения окислительно-восстановительной реакции с образованием Br_2 ? Рассчитать объём этого раствора, необходимый для приготовления 100 мл раствора с $C_f = 0.05$ моль/л.

Индивидуальное практическое задание.

Пример для индивидуального практического задания:

Практическое задание № 1 по приготовлению растворов.

- 1. Приготовить 100г раствора с массовой долей $Cr(NO_3)_3$ 2%. Исходная соль $Cr(NO_3)_3$ 9 H_2O .
- 2. Измерить плотность приготовленного раствора.
- 3. Рассчитать молярную концентрацию этого раствора.
- 4. Какой объем исходного раствора необходимо взять для приготовления 50 мл раствора с молярной концентрацией 0,05 моль/л? Приготовить разведение.

Ситуационная задача.

Задача 1. Как следует одновременно изменить температуру и давление в обратимой реакции

$$2NO_{2(\Gamma)} \leftrightarrow N_2O_{4(\Gamma)}$$
 (ΔH прямой реакции –57,4 кДж), бурая беспветная

чтобы газовая смесь обесцветилась?

а) р увеличить, Т уменьшить; б) р и Т увеличить;

в) р и Т уменьшить;

 \mathbf{B}) оба — \mathbf{B} фильтрате;

г) р уменьшить, Т увеличить.

Задача 2. Раствор, содержащий смесь солей сульфатов алюминия и хрома (III), обработали избытком щелочи, а затем профильтровали. Где будут находиться соединения алюминия и хрома?

- а) оба на фильтре; б) алюминий на фильтре, хром в фильтрате;
 - г) хром на фильтре, алюминий в фильтрате.

Задача 3. Из нижеприведенных молекул и ионов: Zn^{2+} , K^+ , Cl^- , NH_3 - составить координационные формулы комплексных соединений катионного, анионного и электронейтрального типа (5 соединений).

Задача 4. Установите соответствие концентрации раствора и величины рН.

- 1. 0,2M HClO ($K_{\text{A}} = 5 \cdot 10^{-8}$); 2. 0,05M Ca(OH)₂; 3. 0,01M H₃PO₄ ($K_{\text{A}}^{\text{I}} = 10^{-2}$); 4. 0,1MHNO₃ a) 1. 6) 4; B) 13; Γ) 2
- 4.1.3. Шкала оценивания для текущего контроля

Тест.

87-100 процентов правильных ответов – отлично;

73-86 процентов правильных ответов – хорошо

60-72 процента правильных ответов – удовлетворительно;

менее 60 процентов правильных ответов – неудовлетворительно.

Контрольная работа.

«отлично» – все ответы верны, ход решения верный;

«хорошо» — арифметические ошибки и неточности в 25-40 процентах заданий, остальные ответы верны, ход решения везде верный;

«удовлетворительно» - ошибки и неточности в 40-50 процентах заданий, не менее половины верных ответов, ход решения верен на 50-75 процентов;

<иеудовлетворительно> – ход решения неверен в большинстве заданий, верных ответов менее 50 процентов.

Индивидуальное практическое задание.

Более 50 процентов заданий выполнено на занятии самостоятельно – зачтено.

Менее 50 процентов выполнено – не зачтено

Собеседование по ситуационным задачам.

Дан верный ответ (на основании приведенных уравнений реакций, составленных формул веществ или проделанных расчетов), обоснованный с использованием теоретических знаний; либо ответ верный полностью или частично, но имеются ошибки в рассуждениях, теоретическое обоснование неполное – зачтено

Ответ полностью неверный, либо ответ верный частично, но теоретическое обоснование отсутствует или содержит грубые ошибки – не зачтено

- 4.2. Формы и материалы промежуточной аттестации.
- 4.2.1. Промежуточная аттестация проводится в форме экзамена.

4.2.2. Оценочные средства для промежуточной аттестации: тест.
Пример экзаменационного билета:
БИЛЕТ №1
1. Число атомов кислорода в сульфате меди (M=160 г/моль) массой 16 г равно: а) $3.01\cdot10^{23}$; б) $1.204\cdot10^{23}$; в) $2.408\cdot10^{23}$; г) $6.02\cdot10^{23}$.
2. Какая частица имеет большее число электронов, чем протонов?
а) гидроксид-ион; б) ион магния; в) атом фосфора; г) ион аммония.
3. Какой уровень и подуровень заполняется после 6p? a)5f; б)7s; в) 6d; г)7p.
4. Порядковый номер элемента, валентные электроны которого имеют конфигурацию $6s^26p^5$, равен: а) 104
б) 210; в) 84; г) 85.
5. Недавно открытый химический элемент с порядковым номером 116 является электронным аналогом: а
лития; б) кислорода; в) марганца; г) азота.
6. Какая характеристика элемента не зависит от номера группы, в которой он находится?
а) заряд ядра; б) высшая степень окисления; в) число валентных электронов; г) формула водо-
родного соединения.
7. Химический элемент находится в 4 периоде, формула его летучего водородного соединения НЭ. Назовите этот элемент. a) Br; б) Ge; в) Мп; г) Ti.
8. Электронно-структурной формуле
n:m:n
n отвечает строение молекулы:
a) SO_3 ; b) BF_3 ; b) NH_3 ; Γ) SeO_3 .
9. Какую форму имеет молекула $SOCl_2$, если сера в sp^3 гибридизации, в гибридизации участвуют 3
одноэлектронные орбитали и одна неподеленная электронная пара? а) пирамидальную;
б) тетраэдрическую; в) угловую; г) треугольную.
10. Элемент с какой электронной конфигурацией образует кристаллическую решетку металлического типа
a) $3s^2 3p^4$;
11. Тепловой эффект какой реакции в стандартных условиях соответствует ΔH^0_f (CaO _(к))?
a) $CaCO_{3(\kappa)} = CaO_{(\kappa)} + CO_{2(r)}$; 6) $Ca_{(\kappa)} + O_{(r)} = CaO_{(\kappa)}$; B) $Ca(OH)_{2(\kappa)} = CaO_{(\kappa)} + CO_{2(r)}$; r) $Ca_{(\kappa)} + O_{2(r)} = CaO_{(\kappa)}$
12. Проведя анализ уравнения Гиббса с учетом изменения энтропии, установить, при каких температурах
возможно протекание реакции $NH_{3(r)} + CO_{2(r)} + H_2O_{(ж)} = NH_4HCO_{3(к)} + Q$: а) при высоких температурах
б) при любых температурах; в) при низких температурах; г) ни при каких температурах.
13. Как изменится скорость реакции синтеза аммиака, если концентрацию азота увеличить в 3 раза, а концентрацию водорода уменьшить в 3 раза?
а) уменьшится в 9 раз; б) не изменится; в) увеличится в 3 раза; г) уменьшится в 6 раз.
14. Смещение равновесия вправо в реакции $CO_{(r)} + 2H_{2(r)} \leftrightarrow CH_3OH_{(r)} - Q$ произойдет при:
а) уменьшении р; б) уменьшении T ; в) уменьшении $C(CH_3OH)$; г) уменьшении $C(H_2OH)$
15. Гомогенная обратимая реакция выражается уравнением $3A + B \leftrightarrow 2C$. В момент равновесия $[A] = 2$
моль/л, $[B] = 0.5$ моль/л, $[C] = 3$ моль/л. $K_p = ?$ a) 2; b) 1,08; г) 0,92.
16. Какова молярная концентрация раствора, если в 200 мл его содержится 1,16 г натрия хлорида (М=58
г/моль)? а) 0,01 моль/л; б) 0,02 моль/л; в) 0,1 моль/л; г) 2 моль/л.
17. Расположите растворы одинаковой молярной концентрации и температуры в порядке уменьшения ос-
мотического давления: а) галактоза – муравьиная кислота – фосфат натрия;
б) фосфат натрия – галактоза – муравьиная кислота;

в) муравьиная кислота – галактоза – фосфат натрия; г)фосфат натрия –муравьиная к-та – галактоза.

```
18. Молярная концентрация какого иона в насыщенном водном растворе гидроксида алюминия наиболь-
                                                   в) AlOH<sup>2+</sup>
шая?
                                  б) OH<sup>-</sup>
                                                                        \Gamma) Al(OH)<sub>2</sub><sup>+</sup>
19. В каком ряду электролитов равной концентрации происходит уменьшение рН растворов?
a) CH<sub>3</sub>COOH – HCl – NH<sub>4</sub>OH;
                                            б) HCl – CH<sub>3</sub>COOH – NH<sub>4</sub>OH;
B) NH<sub>4</sub>OH – HCl –CH<sub>3</sub>COOH;
                                            \Gamma) NH_4OH - CH_3COOH - HCl.
20. Вычислить pH раствора слабой кислоты с C = 0.05 моль/л и \alpha = 0.02 a) 5; б) 6;
                                                                                                                  в) 3;
                                                                                                                            г) 4
В заданиях 21-24 установите соответствие концентрации раствора и величины рН:
21. 0,05 M NH<sub>4</sub>OH (K_{\pi} = 2.10^{-5}) 22. 0,05 M H<sub>2</sub>SO<sub>4</sub> 23. 0,1 M H<sub>2</sub>CO<sub>3</sub> (K_{\pi}^{-1} = 10^{-7})
                                                                                                                      24. 0.01 M CsOH
                 б) 11
                                 в) 12
a) 1
                                                    г) 4
25. В 0,5 л насыщенного раствора труднорастворимого электролита типа АВ содержится 2·10<sup>-4</sup> моль катио-
на А. Вычислить ПР этой соли. a) 4 \cdot 10^{-16};
                                                              б) 1,6·10<sup>-7</sup>;
                                                                                 в) 4·10<sup>-8</sup>;
                                                                                                  \Gamma) 8·10<sup>-4</sup>.
26. В растворе какой соли лакмус синий?
                                                           a) CaCl<sub>2</sub>;
                                                                           б) ZnSO_4; в) Fe(NO_3)_3;
                                                                                                                   \Gamma) K<sub>2</sub>CO<sub>3</sub>.
27. Степень гидролиза катионов уменьшается в ряду:
                                                                                                  \Gamma) Cu^{2+} - NH_4^+ - Fe^{3+}.
a) Fe^{3+} - Cu^{2+} - NH_4^+; 6) Fe^{3+} - NH_4^+ - Cu^{2+}; B) NH_4^+ - Cu^{2+} - Fe^{3+};
28. Степень гидролиза хлорида висмута (III) увеличивается при:
а) добавлении H_2SO_4; б) добавлении H_2O; в) охлаждении раствора; г) добавлении BiCl<sub>3</sub>.
29. Процесс восстановления происходит в случае:
                                                         B) AsO_4^{3-} \rightarrow AsH_3;
a) AsO_3^{3-} \rightarrow AsO_4^{3-};
                                 б) NH<sub>3</sub>→NO;
                                                                                                \Gamma) SO<sub>2</sub> \rightarrow SO<sub>3</sub><sup>2</sup>;
30. В окислительно-восстановительной реакции C1O_2 + KOH \rightarrow KC1 + KClO_3 + H_2O
сумма коэффициентов перед окислителем и восстановителем равна: а) 10; 6) 12;
                                                                                                                в)6:
31. Наиболее сильный окислитель – это: a) Sn^{2+}, E^0(Sn^{2+}/Sn) = -0.14 B;
                                                                                                     6) Cu^{2+}, E^0 (Cu^{2+}/Cu) = 0,34 B;
                                               \Gamma) Zn^{2+}, E^0 (Zn^{2+}/Zn) = -0,76 B.
B) Ag^+, E^0 (Ag^+/Ag) = 0.80 B;
32. Тетрацианодиамминхромат (III) бария имеет формулу: а) Cr[Ba(NH_3)_2(CN)_4];
                                                                                                                σ) Ba[Cr(NH<sub>3</sub>)<sub>2</sub>(CN)<sub>4</sub>];
                                 \Gamma) Ba[Cr(NH<sub>3</sub>)<sub>2</sub>(CN)<sub>4</sub>]<sub>2</sub>;
B) Cr_2[Ba(NH_3)_2(CN)_4];
33. Какая реакция приведет к трансформации комплексного иона в другой?
a) [Cu(OH)_4]^2 + 4N\dot{H}_3 \rightarrow [Cu(N\dot{H}_3)_4]^{2+} + 4OH; 6) [Cu(OH)_4]^2 + 4CI \rightarrow [CuCI_4]^{2-} + 4OH;

B) [Cu(OH)_4]^2 + 4NCS \rightarrow [Cu(NCS)_4]^2 + 4OH; 7) [Cu(OH)_4]^2 + 4CN \rightarrow [Cu(CN)_4]^2 + 4OH
34. Установить исходные вещества в схеме реакции: ... \rightarrow NaI + NaIO<sub>3</sub> + H<sub>2</sub>O
a) I_2O_5 + NaOH \rightarrow
                                β I<sub>2</sub> + NaOH →
                                                           B) NaIO + HI \rightarrow
                                                                                         \Gamma) NaIO<sub>2</sub> + HI \rightarrow
35. Укажите группу соединений, в которой присутствуют йодистая кислота, бромат натрия, хлорноватая
кислота: a) HIO<sub>3</sub>, NaBrO<sub>4</sub>, HCIO<sub>2</sub>; б) HIO, NaBrO<sub>2</sub>, HClO; в) H<sub>5</sub>IO<sub>6</sub>, NaBrO, HClO<sub>4</sub>; г) HIO<sub>2</sub>, NaBrO<sub>3</sub>, HClO<sub>3</sub>.
36. В какой реакции оксид серы (IV) проявляет окислительные свойства?
                           δ) SO<sub>2</sub> + CI<sub>2</sub> + H<sub>2</sub>O→
                                                             B) SO_2 + H_2S \rightarrow
a) SO_2 + H_2O \rightarrow
                                                                                           \Gamma) SO<sub>2</sub> + KOH\rightarrow
37. Какие вещества вступили в реакцию, если образовались BaSO_4 + H_2SO_4 + H_2O:
a) Ba(HSO_4)_2 + BaSO_3 + O_2; 6) BaO + Ba(HSO_3)_2;
                                                                       B) Ba(HSO<sub>3</sub>)<sub>2</sub> + H<sub>2</sub>O<sub>2</sub>; \Gamma) Ba + H<sub>2</sub>SO<sub>4(KOHII)</sub>
38. В реакции SO_{2 \text{ (ra3)}} + Br_2 + H_2O \rightarrow сумма коэффициентов при окислителе и восстановителе:
                                         в) 6;
                                                                    r) 20.
a) 2;
39. Какой нитрат разлагается при нагревании на нитрит и O_2? а)AgNO<sub>3</sub>; б)Cu(NO<sub>3</sub>)<sub>2</sub>; в)Fe(NO<sub>3</sub>)<sub>3</sub>; г)NaNO<sub>3</sub>.
40. Допишите недостающий продукт: KBiO_3 + MnSO_4 + HNO_3 \rightarrow HMnO_4 + ... + KNO_3 + K_2SO_4 + H_2O.
a) HBiO<sub>3</sub>:
                       б) Bi(NO<sub>3</sub>)<sub>3</sub>;
                                                 B)Bi(OH)_3;
                                                                         \Gamma)Bi<sub>2</sub>O<sub>3</sub>.
41. В реакции Bi(NO_3)_3 + Na_2[Sn(OH)_4] + NaOH \rightarrow сумма коэффициентов при окислителе и восстановителе:
a) 5;
               б) 2;
                           в)3;
                                        г) 6.
42. Сравните реакцию среды в растворах силиката и карбоната натрия при одинаковых концентрациях и
температуре: а) оба раствора одинаково щелочные; б) карбонат более щелочной;
в) силикат более щелочной, чем карбонат;
                                                             г) оба раствора одинаково кислые.
43. В какой реакции не происходит растворение осадка? а) \downarrow Zn(OH)<sub>2</sub> + NH<sub>3</sub> · H<sub>2</sub>O<sub>конц</sub> \rightarrow б) \downarrow HgI<sub>2</sub> + HI конц \rightarrow
                                         \Gamma) \downarrowCdS + KOH <sub>pas6</sub>\rightarrow
B) \downarrow ZnS + HI_{KOHII} \rightarrow
44. Сульфат хрома (III) обработали большим избытком щелочи. Какое соединение образуется при этом? а)
Na<sub>2</sub>CrO<sub>4</sub>;
                          б)Cr(OH)<sub>3</sub>;
                                                   B) Na_3[Cr(OH)_6];
                                                                                   \Gamma)Cr<sub>2</sub>O<sub>3</sub>.
45. Приведенному ряду солей – K_2MnO_3, K_2MnO_4, KMnO_4, K_4MnO_4 – соответствует ряд названий кислот:
а) метамарганцеватистая
                                              б) марганцовистая
                марганцовистая
                                                          метамарганцеватистая
                марганцовая
                                                                   марганцовая
                                                           ортомарганцеватистая
                ортомарганцеватистая
          в) метамарганцеватистая
                                                         г) ортомарганцеватистая
             ортомарганцеватистая
                                                         марганцовистая
             марганцовая
                                                  марганцовая
```

марганцовистая метамарганцеватистая 46. В какой схеме одним из продуктов реакции будет MnO₂? a) $KMnO_4 + Na_2SO_3 + KOH \rightarrow$ б) $KMnO_4 + NaNO_2 + H_2O \rightarrow$ B) $KMnO_4 + KI + H_2SO_4 \rightarrow$ Γ) MnSO₄ + NaBiO₃ + HNO₃ \rightarrow 47. Какие реактивы следует взять для осуществления превращения $AgNO_3 \rightarrow Ag$? a) NH₄OH; 6)NH₄OH + $C_6H_{12}O_6$; в)NH₄Cl; Γ)NH₃. 48. Молярная масса эквивалента перманганата калия при переходе в Mn^{2+} : а) М; б) М/2; в) М/3; г) М/5. 49. С помощью какого реактива можно окислить Co^{2+} до Co^{3+} , если Co^{3+}/Co^{2+} C1₂/2C1⁻ $B_{\Gamma_2}/2B_{\Gamma}$ $I_{2}/2I^{-}$ E°,B: 1.36 1,03 0,54 1,8 б) хлорной и бромной; г) ни один не подходит. а) только хлорной водой; в) все галогены подходят; 50. Конечный продукт в цепочке превращений - это: a) Ag; 6) Ag₂O; в) $[Ag(NH_3)_2](OH);$ r) AgNO₃

 NH_3

 $C_6H_{12}O_6\\$

4.2.3 Шкала оценивания.

Ag

0-29 правильных ответов – неудовлетворительно;

NaOH

- 30-36 правильных ответов удовлетворительно;
- 37-43 правильных ответов хорошо;

 $HNO_{3(K)}$

44-50 правильных ответов – отлично.

4.3. Соответствие оценочных средств промежуточной аттестации по дисциплине формируемым компетенциям

Код компетенции	Код индикатора достижения компетенции	Оценочные средства промежуточной аттестации тест
ОПК -1	ИДОПК-1.3	+
	ИДОПК-1.4	+

4.4. Критерии оценки сформированности компетенций в рамках промежуточной аттестации по дисциплине

Код	Код индика- тора дости-	Структур- ные элемен-	Критерии оценки сформиро	ованности компетенции
тенции	жения ком- петенции	ты оценоч- ных средств	Не сформирована	Сформирована
ОПК -1	идопк-1.3	Тест	- Не умеет рассчитывать тепловые эффекты химических процессов; составлять электронные конфигурации атомов, ионов, определять тип хим. связи; смещать равновесия в растворах электролитов. — не умеет проводить простейшие химические эксперименты, работать с химической посудой, определять рН растворов при помощи	ских процессов; составлять электронные конфигурации атомов, ионов, определять тип хим. связи; смещать равновесия в растворах электролитов. — умеет проводить простейшие химические эксперименты, работать с химической посудой,

			индикаторов.	при помощи индикаторов.
			- Не знает современную мо-	- Знает современную мо-
			дель атома,	дель атома,
			- не имеет представлений о	- имеет представления о
			строении химических со-	строении химических со-
		Тест	единений и закономерно-	единений и закономерно-
	ИДОПК-1.4	1001	стях протекания реакций;	стях протекания реакций;
			зависимости химических	зависимости химических
			свойств простых и сложных	свойств простых и слож-
		веществ от	веществ от положения эле-	ных веществ от положе-
			ментов в периодической	ния элементов в периоди-
			сист	ческой системе

5. Методические материалы по освоению дисциплины

Полный комплект методических материалов по дисциплине находится на кафедре.

6. Учебная литература для обучающихся по дисциплине

6.1. Основная литература.

- 1.Общая химия:[Электронный ресурс]: учебник / А.В. Жолнин; под ред. В.А. Попкова, А.В. Жолнина. М.: ГЭОТАР-Медиа, 2014. 400 с. Режим доступа: http://www.studmedlib.ru/book/ISBN9785970429563.html
- 2. Химия: Учебник для вузов [Электронный ресурс]/И.Н. Семенов, И.Л. Перфилова
— С.-Пб.: Химиздат, 2017. — 656 с.— Режим доступа: http://www.studmedlib.ru/book/ISBN978593882915.html
- 3.Общая химия: учеб. пособие / Н.Л. Глинка М., Кнорус, 2013. 746 с.
- 4.Химия [Электронный ресурс]: учебник для высших учебных заведений / А.А. Гуров и др. М. Издательство МГТУ им. Н.Э. Баумана, 2017. 775 с. Режим доступа: http://www.studmedlib.ru/book/ISBN9785703847282.html
- 6.2. Дополнительная литература.
- 1. Неорганическая химия: [Электронный ресурс]: учебник для фармацевтических университетов и факультетов / О. В. Нестерова, В. А. Попков, А. В. Бабков [и др.]; под редакцией В. А. Попкова, Т. М. Литвиновой. М.: Лаборатория знаний, 2020. 367 с. Режим доступа: ISBN 978-5-00101-923-7. // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/99869.html
- 2. Общая химия в 2 т. Том 1: [Электронный ресурс]: учебник для вузов / Н. Л. Глинка; под редакцией В. А. Попкова, А. В. Бабкова. 20-е изд., перераб. и доп. М.: Юрайт, 2020. 357 с. (Высшее образование). ISBN 978-5-9916-9353-0. Текст: электронный // ЭБС Юрайт [сайт]. URL: https://urait.ru/bcode/451561
- 3.Общая химия: [Электронный ресурс]/ Попков В.А., Пузаков С.А. М.: ГЭОТАР-Медиа, 2010. 976 с. Режим доступа: http://www.studmedlib.ru/book/ISBN9785970415702.html
- 4. Вопросы и задачи по общей химии [Электронный ресурс] / Суворов А.В., Никольский А.Б.-СПб.: ХИМИЗДАТ, 2002. 304 с. Режим доступа: http:// www.studmedlib.ru/book/ / ISBN5938080258.html
- 5. Общая химия: учеб. пособие для студентов вузов / А.В. Суворов, А.Б. Никольский С.-Пб., Химия, $1995 \, \Gamma$. $623 \, C$.

- 5. Общая химия. Биофизическая химия. Химия биогенных элементов: учебник для мед. спец. вузов/Ю.А. Ершов и др.; под ред. Ершова. М.: Высшая школа, 1993. –559 с.
- 7. Общая и неорганическая химия: учеб. для студентов вузов/М.Х. Карапетьянц, С.И. Дракин М., Химия, $1993 \, \Gamma$. $592 \, c$.
- 8. Константы неорганических веществ: справ. / Р.А. Лидин, В.А. Молочко, Л.Л. Андреева; под ред. Р.А. Лидина М., Дрофа, 2006 г.
- 9. Сборник задач и упражнений по общей и неорганической химии: учеб. пособие для студентов вузов / Под ред. Н.Н. Павлова М., Дрофа, 2005

7. Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

В процессе изучения дисциплины используются: учебные аудитории для проведения занятий лекционного типа, занятий семинарского типа, лабораторное и инструментальное оборудование для работы студентов.

Лаборатория оснащена вытяжными шкафами, достаточным количеством химической посуды, оборудования и реактивов для индивидуальной лабораторной работы каждого студента (пробирки, колбы, мерные цилиндры, пипетки, стеклянные палочки, весы, разновес, электричес-кие плитки, спиртовки, лабораторные штативы, штанглазы с растворами и кристаллическими реактивами). Для чтения лекций имеется мультимедийный комплекс (ноутбук, проектор, экран); есть наборы таблиц по всем разделам дисциплины, ситуационные задачи, тестовые задания, доска.

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

Б1.О.05 Химия общая и неорганическая

Код и наименование направления подготовки, профиля: 19.03.01 Биотехнология. Фармацевтическая биотехнология.

Квалификация (степень) выпускника: бакалавр

Форма обучения: очная

Формируемая (ые) компетенция(и):

ОПК-1: Способен изучать, анализировать, использовать биологические объекты и процессы, основываясь на законах и закономерностях математических, физических, химических и биологических наук и их взаимосвязях.

ОПК-1.3: Владеет и использует в своей профессиональной деятельности знания законов и закономерностей химических наук.

ОПК-1.4: Изучает, анализирует, использует биологические объекты и процессы, основываясь на законах и закономерностях биологических наук и их взаимосвязях с математическими, физическими и химическими науками.

Объем и место дисциплины в структуре ОПОП:

Дисциплина <u>Б1.О.05</u> Химия общая и неорганическая относится к базовой части ОПОП, изучается в 1 семестре 1 курса, общая трудоемкость дисциплины в зачетных единицах составляет 5 з. е.(180 часов).

План дисциплины:

Раздел 1. Введение. Предмет, задачи и методы общей и неорганической химии. Основные законы, положения и понятия химии.

Раздел 2. Строение вещества.

Раздел 3. Основные закономерности протекания химических реакций.

Раздел 4. Учение о растворах. Растворы и их свойства.

Раздел 5. Окислительно-восстановительные реакции (ОВР).

Раздел 6. Химия комплексных соединений

Раздел 7. Химия элементов.

Форма промежуточной аттестации: экзамен