ФИО: Лужанин Владимир Геннадьевич

Должность: Ректор

Дата подписания: 06.02.2025 13:36:22 **ОЦЕНОЧНЫЕ СРЕДСТВА ПО ДИСЦИПЛИНЕ**

Уникальный программый казоч ТЕОРЕТИЧЕСКИЕ ОСНОВЫ КАЧЕСТВЕННОГО АНАЛИЗА d56ba45a9b6e5c64a519e2c5ae3bb2ccddb840af0 промежуточная аттестация

Код и наименование компетенций:

ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам.

Приложение 1

ПК 2.2. Проводить химический анализ состава и параметров сырья, полуфабрикатов и готовой продукции в соответствии со стандартными (аттестованными) методиками, требованиями нормативно-технической документации, требованиями охраны труда и экологической безопасности в соответствии с действующей нормативной документацией

Тестовые задания

Номер зада- ния	Содержание вопроса	Правильный ответ	Компетенции
1.	Протолитические реакции обусловлены переносом между реагирующими частицами.	протонов	OK 01.
2.	В реакциях комплексообразования происходит передача пар от донора к акцептору.	электронных	OK 01.
3.	Способ проведения реакции, при котором в пробирку добавляют органический растворитель, называется	экстракционным	OK 01.
4.	Формула расчета произведения растворимости (ПР) для малорастворимого электролита имеет вид: 1. AlPO ₄ 2. Cr(OH) ₃ 3. Mg(OH) ₂ 4. Bi ₂ S ₃ A) 27S ⁴ Б) 4S ³ B) 108S ⁵ Γ) S ²	2 – A 3 – Б 4 – В 1 – Γ	ОК 01.
5.	Для характеристики различных типов реакций используют константы равновесия и другие количественные характеристики: 1. протолитические реакции 2. окислительно-восстановительные реакции 3. реакции осаждения 4. реакции комплексообразования A) ПР Б) α, Ka, Kb B) E ⁰ , Kp Γ) Kн, β	$3 - A$ $1 - B$ $2 - B$ $4 - \Gamma$	OK 01.
6.	Число электронов n, участвующих в полуреакциях: 1. $NO_3^- + 2H^+ + n\bar{e} \leftrightarrow NO_2^- + H_2O$ 2. $Cr_2O_7^{2-} + 14H^+ + n\bar{e} \leftrightarrow 2Cr^{3+} + 7H_2O$ 3. $2Cu^{2+} + 2Br^- + n\bar{e} \leftrightarrow Cu_2Br_2 \downarrow$ 4. $2IO_3^- + 12H^+ + n\bar{e} \leftrightarrow I_2 + 6H_2O$ A) 1 Б) 10 В) 6 Γ) 2	3 – A 4 – Б 2 – B 1 - Γ	ПК 2.2.

7.	Математическое выражение молярной растворимости имеет вид: 1. HgI_2 2. CdS 3. BiI_3 4. $Mg_3(PO_4)_2$ A) $S = \sqrt[4]{\Pi P/27}$ Б) $S = \sqrt{\Pi P}$ В) $S = \sqrt[5]{\Pi P/108}$ Г) $S = \sqrt[3]{\Pi P/4}$	3 – A 2 – Б 4 – B 1 - Γ	ОК 01.
8.	Для данной температуры произведение молярных концентраций ионов водорода и гидроксид-ионов есть величина постоянная и называется ионным	произведением	ОК 01.
9.	Гидроксидный показатель рОН предста-вляет отрицательный	десятичный	ОК 01.
10.	Связь между скоростью реакции и концентрацией реагирующих веществ определяет: 1. закон эквивалентов 2. закон разбавления Оствальда 3. закон действующих масс 4. периодический закон Д.И. Менделеева	3	ОК 01.
11.	Этапы проведения химического анализа: 1.подготовка пробы к анализу 2. оценка качества 3. измерение интенсивности аналитического сигнала 4. отбор пробы для анализа 5. резульат анализа	4, 1, 2, 3, 5	ОК 01.
12.	Коэффициент активности иона зависит от заряда иона, его концентрации, природы и силы раствора	ионной	OK 01.
13.	Качественный химический анализ предназначен для обнаружения компонентов анализируемого объекта и его	идентификации	ОК 01.
14.	Аналитические реакции и реагенты подразделяются по признаку взаимодействия: 1. с одним ионом 2. с группой ионов для ее отделения и обнаружения 3. с небольшим числом ионов 4. одним или небольшим числом ионов А) селективные Б) специфические В) характерные Г) групповые	3 – A 1 – Б 4 - B 2 - Γ	OK 01.
15.	Гидролиз — это химическое взаимодействие вещества с ионами воды, сопровождающееся	равновесия	OK 01.

	нарушением диссоциации воды за		
	счет связывания ионов водорода или гидроксид-		
	ионов в малодиссоциирующее соединение.		
	Буферным действием обладает раствор:		
	1. NH ₄ Cl + HCl		
16.	2. CH ₃ COONa + NaOH	3	ОК 01.
	3. CH ₃ COOH + CH ₃ COONa		
	4. CH ₃ COOH + CH ₃ COONH ₄		
	В первую очередь с перманганатом калия в		
	кислой среде (Е=+1,52 В) окислится анион:		
17	1. Cl ⁻ (+ 1,36 B)	2	OIC 01
17.	2. Br ⁻ (+ 1,07 B)	3	ОК 01.
	$3. SO_3^{2-} (-0.93 B)$		
	4. $C_2O_4^{2-}$ (-0,49 B)		
	Групповым реагентом катионов II		
	аналитической группы является:		
4.0	1. гидроксид натрия		ПК 2.2.
18.	2. гидроксид аммония	3	
	3. хлороводородная кислота		
	4. серная кислота		
	Условием выпадения вещества в осадок из		
	раствора является:		
	1. ПИ< ПР		
19.	2. ПИ = ПР	4	ОК 01.
	$3. C_{\rm M} < \Pi P$		
	4. ПИ > ПР		
	Анализ смеси веществ можно провести		
20.	дробным,, компромиссным	систематическим	ОК 01.
	методами.	*****	
	Окислительно-восстановительной двой-		
	ственностью обладают ионы:		OI(01
	$1. S^{2}, SO_{3}^{2}$		ОК 01.
21.	2. NO ₂ , SO ₃ ²⁻	2	
	$3. S_2O_3^{2-}, CO_3^{2-}$		
	4. NO ₃ , Hg ₂ ²⁺		
	Обнаружение катиона аммония можно провести		
	в «газовой камере» с помощью:		
	1. гексанитритокобальтата (III) натрия		ПК 2.2.
22.	2. виннокаменной кислоты	4	11K 2.2.
22.	3. гексагидроксостибата (V) калия	7	
	4. тетрайодомеркурата (II) калия в присутствии		
	КОН		
	Условием растворения осадока в растворе		
	является:		
	лынстея. 1. ПИ< ПР		
23.	2. ПИ = ПР	1	ОК 01.
	$3. C_{M} < \Pi P$		
	3. С _м < ПР 4. ПИ > ПР		
			ПК 2.2.
24.	Наименее устойчив комплексный ион:	4	111 2.2.
	1		İ

	$ \begin{array}{lll} 1. \ [Ag(NH_3)_2]^+ & K_H = 6.8 \cdot 10^{-8} \\ 2. \ [Ag(S_2O_3)]^- & K_H = 1.0 \cdot 10^{-13} \\ 3. \ [AgCl_2]^- & K_H = 1.8 \cdot 10^{-5} \\ 4. \ [J_3]^- & K_H = 1.0 \cdot 10^{-3} \end{array} $		
25.	Способ проведения аналитической реакции на фильтровальной бумаге называется	хроматографическим	ОК 01.
26.	При взаимодействии катионов III аналитической группы с дихроматом калия в присутствии ацетата натрия выпадает желтый осадок: 1. CaCrO ₄ 2. SrCrO ₄ 3. BaCrO ₄ 4. Ag ₂ CrO ₄	3	ПК 2.2.
27.	Тип аналитической химической реакции: $CuSO_4 + 4NH_4OH = [Cu(NH_3)_4]SO_4 + 4H_2O$ 1. окислительно-восстановительная 2. протолитическая 3. осадительная 4. комплексообразования	4	OK 01.
28.	Наибольшей растворимостью в воде обладает соединение:	3	ПК 2.2.
29.	Равновесной системе Ag ₃ PO ₄ (т) ↔ 3Ag ⁺ + PO ₄ ³⁻ соответствует выражение константы равновесия: 1. [Ag ⁺]·[PO ₄ ³⁻]	4	OK 01.
30.	Молярная растворимость S в ряду $CaSO_4$ $CaCO_3$ CaC_2O_4 $\Pi P = 2 \cdot 10^{-5}$ $\Pi P = 1 \cdot 10^{-8}$ $\Pi P = 2 \cdot 10^{-9}$ 1. увеличивается 2. не изменяется 3. монотонно уменьшается 4. монотонно увеличивается	3	ПК 2.2.
31.	Для окисления бромид-ионов ($E^o_{Br_2/2Br^-}=1{,}08$ В) можно использовать: 1. хлорид железа(III) $E^o_{Fe^{3+}/Fe^{2+}}=0{,}77$ В	4	ПК 2.2.

	2. йод $E^o_{I_2/2I^-}=0,54~\mathrm{B}$		
	3. нитрит натрия $E^o_{NO_2^-/NO} = 0,99$ В		
	4. перманганат калия в кислой среде $E^o_{\mathit{MnO}_4^-/\mathit{Mn}^{2+}}$		
	= 1,51 B		
	Наиболее сильный электролит:		
32.	1. H_2CO_3 $K_{a1} = 4.5 \cdot 10^{-7}$ $K_{a2} = 4.7 \cdot 10^{-11}$ 2. H_2S $K_{a1} = 6.0 \cdot 10^{-8}$ $K_{a2} = 1.0 \cdot 10^{-14}$	2	ПК 2.2.
32.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
	Нитрат серебра является групповым реагентом		
	на ионы:		
22	1. Cl ⁻ , Br ⁻ , SCN ⁻	1	ПК 2.2.
33.	2. Br ⁻ , CH ₃ COO ⁻ , Γ	1	
	3. Br ⁻ , SCN ⁻ , CH ₃ COO ⁻		
	4. Cl ⁻ , NO ₂ ⁻ , Br ⁻		
	Согласно классификации Н.А. Тананаева к		
	анионам-восстановителям относят:		FH4.2.2
34.	1. Cl ⁻ , Br ⁻ , I ⁻	1	ПК 2.2.
34.	2. NO ₃ ⁻ , NO ₂ ⁻ , CH ₃ COO ⁻	1	
	$3. CO_3^{2-}, PO_4^{3-}, S^{2-}$		
	4. SO ₄ ²⁻ , SO ₃ ²⁻ , S ₂ O ₃ ²⁻		
	Степень диссоциации уксусной кислоты в 0,1		
	моль/дм ³ растворе равна 1,32·10 ⁻² . Концен-		
35.	трация ацетат-ионов равна: 1. 1,32·10 ⁻²	2	ПК 2.2.
33.	2. 1,32·10 ⁻³	2	
	3. 1,32·10 ⁻⁴		
	4. 1,74·10 ⁻⁵		
	Для обнаружения ионов меди (II) в		
	исследуемый раствор необходимо добавить		
36.	избыток:	2	ПК 2.2.
30.	 карбоната натрия концентрированной серной кислоты 	3	
	3. гидроксида аммония		
	4. пероксида водорода		
	Специфической реакцией на катионы калия		
	является реакция:		ПК 2.2.
35.	1. Na ₃ [Co(NO ₂) ₆] 2. H ₂ C ₄ H ₄ O ₆	4	
	2. H ₂ C ₄ H ₄ O ₆ 3. K ₂ [HgJ ₄]		
	4. NH ₄ ClO ₄		
	Константа равновесия для процесса		
	$2\text{Fe}^{3+} + 2\Gamma \rightarrow \text{I}_2 + 2\text{Fe}^{2+}$		
	$(E_{Fe^{3+}/Fe^{2+}}^{o} = 0.777B; E_{I_2/2I^-}^{o} = 0.54B)_{\text{pabha}}$		ПК 2.2.
36.	$1. 10^5$	3	
	$2. 10^4$		
	3.10^8		
	4. 10 ⁹		писоо
37.	Ионная сила раствора хлорида цинка с молярной концентрацией 0,0050 моль/дм ³	2	ПК 2.2.
	равна:	<u> </u>	
<u> </u>	1 *		

	1 0 005		
	1. 0,025		
	2. 0,015		
	3. 0,010		
	4. 0,005		
	Установить связь между величинами и		
	размерностью:	3 – A	
	1. растворимость (Р)		
38.	2. ионная сила раствора (I)	1 - Б	ОК 01.
	3. коэффициент активности иона (f _i)	2 – B	
	4. количество вещества (n)	4 - Γ	
	А) безразмерная Б) $\Gamma/дм^3$ В) моль/ $дм^3$ Г) моль		
	Для характеристики реакций осаждения		
	используют величину:		OIC 01
39.	1. K _H	4	ОК 01.
	2. h		
	3. α		
	4. ПР		
	Отделение катионов четвертой аналитической		
	группы от катионов других групп основано на		
	образовании:		
	1. нерастворимых солей		ПК 2.2.
40.	2. нерастворимых гидроксидов	4	
	3. растворимых гидроксидов		
	4. растворимых комплексных соединений		
	п. растворимым компытексивым сосдинении		
	Наиболее устойчив комплексный ион:		
	1. $[Ag(NH_3)_2]^+$ $K_H=6.8\cdot 10^{-8}$		
	2. $[Zn(NH_3)_4]^{2+}$ $K_H=2,6\cdot10^{-10}$		ПК 2.2.
41.	2. [ZII(1113)4]	4	
	3. $[Cu(NH_3)_4]^{2+}$ $K_H=4,6\cdot10^{-14}$		
	4. $[Zn(OH)_4]^{2-}$ $K_H=2,2\cdot10^{-15}$		
	TT - 6		
	Наиболее растворима в воде соль:		
4.2	1. Ag_2S		ПК 2.2.
42.	2. $Ag_2C_2O_4$ $\Pi P=1\cdot 10^{-11}$	2	
	3. Ag_2CO_3 $\Pi P=8 \cdot 10^{-12}$		
	4. Ag_2CrO_4 $\Pi P=2\cdot 10^{-12}$		
	Водородный показатель раствора гидроксида		
	кальция с концентрацией 0,05 моль/дм ³ равен:		пиоо
43.	1.2	А	ПК 2.2.
43.	2. 3	4	
	3. 12		
	4. 13		
	2 моль/дм ³ раствор хлороводородной кислоты		
	является групповым реагентом для ионов:		
			ПК 2.2.
44.	$1. S^2, SO_3^2, NO_2^-$	3	111. 2.2.
	2. CO ₃ ²⁻ , CH ₃ COO ⁻ , NO ₂ ⁻	3	
	$3. Ag^{+}, Hg^{2+}, Pb^{2+}$		
	4. Mg ²⁺ , Hg ₂ ²⁺ , Pb ²⁺		
	Наиболее растворима в воде соль:		
	10		пиаа
45.	1. BaCrO ₄ $\Pi P = 2 \times 10^{-10}$	А	ПК 2.2.
	2. BaCO ₃ $\Pi P = 7 \times 10^{-9}$	4	
	3. BaSO ₄ $\Pi P = 1 \times 10^{-10}$		
	4. $CaCO_3$ $\Pi P = 1 \times 10^{-8}$		

	II 6 0 0	Т	
46.	Наиболее устойчивый комплексный ион: 1. $[BiI_4]$	3	ПК 2.2.
47.	Наиболее слабый электролит: 1. HNO ₂ $K_{\text{д}} = 4,0 \times 10^{-4}$ 2. HCN $K_{\text{д}} = 7,2 \times 10^{-10}$ 3. HCOOH $K_{\text{д}} = 1,8 \times 10^{-4}$ 4. CH ₃ COOH $K_{\text{д}} = 1,75 \times 10^{-5}$	2	ПК 2.2.
48.	Наиболее сильный восстановитель: 1. $2\text{CO}_2 + 2\text{H}^+ + 2\bar{\text{e}} \leftrightarrow \text{H}_2\text{C}_2\text{O}_4$ $E^\circ = -0,49 \text{ B}$ $2. \text{NO}_2^- + 2\text{H}^+ + \bar{\text{e}} \leftrightarrow \text{NO} + \text{H}_2\text{O}$ $E^\circ = +1,202 \text{ B}$ $3. \text{S}_4\text{O}_6^{2^-} + 2\bar{\text{e}} \leftrightarrow 2\text{S}_2\text{O}_3^{2^-}$ $E^\circ = +0,09 \text{ B}$ $4. \text{I}_2 + 2\bar{\text{e}} \leftrightarrow 2\Gamma$ $E^\circ = +0,54 \text{ B}$	1	ПК 2.2.
49.	Молярная растворимость S в ряду $BaCO_3 \qquad BaCrO_4 \qquad BaSO_4$ $\Pi P = 7 \times 10^{-9} \qquad \Pi P = 2 \times 10^{-10} \qquad \Pi P = 1 \times 10^{-10}$ 1. увеличивается 2. не изменяется 3. монотонно уменьшается 4. монотонно увеличивается	3	ПК 2.2.
50.	Групповой реагент III аналитической группы анионов: 1. 1 моль/дм ³ H ₂ SO ₄ 2. HCl (конц.) 3. 2 моль/дм ³ AgNO ₃ + HNO ₃ 4. нет группового реагента	3	ПК 2.2.
51.	Хлорид-ионы ($E^o_{Cl_2/2Cl^-}$ =1,36 B) можно окислить растворами: 1. хлорида железа(III) $E^o_{Fe^{3+}/Fe^{2+}}=0,77$ B 2. йода $E^o_{I_2/2I^-}=0,54$ B 3. нитрита натрия $E^o_{NO_2^-/NO}=0,99$ B 4. перманганат калия в кислой среде $E^o_{MnO_4^-/Mn^{2+}}=1,51$ B	4	ПК 2.2.
52.	Равновесие реакции BiCl ₃ + H ₂ O → BiOCl↓ + 2 HCl смещается вправо при: 1. подкислении 2. концентрировании 3. охлаждении 4. разбавлении	4	OK 01.
53.	Окислительно-восстановительные реакции протекают в сторону образования продуктов реакции, если: 1. ЭДС = 0 2. ЭДС > 0 3. ЭДС < 0 4. $K_p < 10^{-4}$	2	OK 01.
54.	Водородный показатель pH представляет: 1. активность иона водорода	3	ОК 01.

	2. отрицательный натуральный логарифм молярной концентрации ионов водорода 3. отрицательный десятичный логарифм молярной концентрации ионов водорода 4. десятичный логарифм молярной		
55.	концентрации ионов водорода Аналитические реагенты взаимодействующие с одним или несколькими ионами называются: 1. общими 2. селективными 3. специфическими 4. групповыми	2	OK 01.
56.	Ины железа (III) в кислой среде можно обнаружить: 1. пероксидом водорода 2. концентрированной серной кислотой 3. гексацианоферратом (II) калия 4. гексацианоферратом (III) калия	3	ПК 2.2.
57.	Для характеристики OBP используют величину: 1. h 2. α 3. E ⁰ 4. ПР	3	ОК 01.
58.	Равновесие реакции SbCl ₃ + H ₂ O → SbOCl↓ + 2 HCl смещается в сторону исходных вещести при: 1. подкислении 2. подщелачивании 3. нагревании 4. разбавлении	1	ОК 01.
59.	К первой аналитической группе анионов относятся 1. NO ₂ ⁻ , S ² -, SO ₃ ² - 2. BO ₃ ³ -, C ₂ O ₄ ² -, BO ₂ ⁻ 3. NO ₂ ⁻ , C ₂ O ₄ ² -, PO ₄ ³ - 4. NO ₂ ⁻ , C ₂ O ₄ ² -, S ² -	1	ПК 2.2.
60.	Ацетат-ионы в нейтральной среде можно обнаружить путем действия 1. хлорида железа (II) 2. хлорида железа (III) 3. ацетона 4. аммиака	2	ПК 2.2.

Тесты для раздела 1 Химический анализ. Законы химии, лежащие в основе качественного химического анализа

Номер зада- ния	Содержание вопроса	Правильный ответ	Компетенции
1.	Установить связь между величинами и размерностью: 1. растворимость (P) 2. ионная сила раствора (I) 3. коэффициент активности иона (f_i) 4. количество вещества (n) A) безразмерная (f_i) Моль/дм (f_i) Моль	3 – A 1 - Б 2 – B 4 - Γ	OK 01.
2.	Ионная сила раствора хлорида цинка с молярной концентрацией 0,0050 моль/дм ³ равна: 1. 0,025 2. 0,015 3. 0,010 4. 0,005	2	ПК 2.2.
3.	Аналитические реакции и реагенты подразделяются по признаку взаимодействия: 1. с одним ионом 2. с группой ионов для ее отделения и обнаружения 3. с небольшим числом ионов 4. одним или небольшим числом ионов А) селективные Б) специфические В) характерные Г) групповые	3 – A 1 – Б 4 - B 2 - Γ	OK 01.
4.	Наиболее слабый электролит: 1. HNO ₂	2	ПК 2.2.
5.	Степень диссоциации уксусной кислоты в 0,1 моль/дм³ растворе равна 1,32·10 ⁻² . Концентрация ацетат-ионов равна: 1. 1,32·10 ⁻² 2. 1,32·10 ⁻³ 3. 1,32·10 ⁻⁴ 4. 1,74·10 ⁻⁵	2	ПК 2.2.
6.	Равновесной системе Ag₃PO₄(т) ↔ 3Ag⁺ + PO₄³⁻ соответствует выражение константы равновесия: 1. [Ag⁺]·[PO₄³⁻]	4	OK 01.

	3. 1		
	$[Ag_3PO_4]$		
	4. [Ag ⁺] ³ ·[PO ₄ ³⁻]		
	Качественный химический анализ пред-		
	назначен для обнаружения компонентов		
7.	анализируемого объекта и его	идентификации	ОК 01.
	(установления подлинности, аналогии с		
	определенным эталоном - стандартом).		
	Коэффициент активности иона зависит от		
8.	заряда иона, его концентрации, природы и	ионной	ОК 01.
	силы раствора		
	Связь между степенью диссоциации и		
	константой диссоциации определяет:	2	OK 01.
9.	1. закон эквивалентов		
9.	2. закон разбавления Оствальда		OK 01.
	3. закон действующих масс		
	4. периодический закон Д.И. Менделеева		
	Способ проведения реакции, при котором в		
10.	пробирку добавляют органический	экстракционным	ОК 01.
	растворитель, называется Этапы проведения химического анализа:		
	1.подготовка пробы к анализу		
11.	2. оценка качества		
	3. измерение интенсивности аналитического	4, 1, 2, 3, 5	ОК 01.
11.	сигнала	4, 1, 2, 3, 3	OK 01.
	4. отбор пробы для анализа		
	5. резульат анализа		
	o. posymbar anamina		

Тесты для раздела 2 Химическое равновесие в растворах электролитов

Номер зада- ния	Содержание вопроса	Правильный ответ	Компетенции
1.	Протолитические реакции, обусловлены переносом между реагирующими частицами.	протонов	ОК 01.
2.	В реакциях комплексообразования происходит передача пар от донора к акцептору.	электронных	ОК 01.
3.	Для характеристики реакций осаждения используют величину: 1. K _H 2. h 3. α 4. ПР	4	OK 01.
4.	Водородный показатель pH представляет: 1. активность иона водорода 2. отрицательный натуральный логарифм молярной концентрации ионов водорода	3	OK 01.

	2		
	3. отрицательный десятичный логарифм		
	молярной концентрации ионов водорода		
	4. десятичный логарифм молярной		
	концентрации ионов водорода		
	Равновесие реакции $SbCl_3 + H_2O \rightarrow SbOCl↓ + 2$		
	HCl смещается в сторону исходных вещести		
	при:		OIC 01
5.	1. подкислении	1	ОК 01.
	2. подщелачивании		
	3. нагревании		
	4. разбавлении		
	Окислительно-восстановительные реакции		
	протекают в сторону образования продуктов		
6	реакции, если:	3	ОК 01.
6.	1. ЭДС = 0	2	
	2. ЭДС > 0		
	3. ЭДС < 0		
	4. $K_p < 10^{-4}$		
	Равновесие реакции $BiCl_3 + H_2O → BiOCl↓ + 2$		
	HCl смещается вправо при:		
7.	1. подкислении	4	ОК 01.
/.	2. концентрировании	4	
	3. охлаждении		
	4. разбавлении		
	Хлорид-ионы ($E_{CL/2Cl}^o$ =1,36 B) можно окис-		
	лить растворами:		
	1. хлорида железа(III) $E^o_{Fe^{3+}/Fe^{2+}} = 0,77$ В		ПК 2.2.
8.	2. йода $E^o_{I_2/2I^-}=0,54~\mathrm{B}$	4	TIK 2.2.
	3. нитрита натрия $E_{NO_2^-/NO}^o = 0,99 \text{ B}$		
	4. перманганат калия в кислой среде $E^o_{MnO_4^-/Mn^{2+}}$		
	= 1,51 B		
	Наиболее сильный восстановитель:		
	1. $2CO_2 + 2H^+ + 2\bar{e} \leftrightarrow H_2C_2O_4$ $E^0 = -0.49 \text{ B}$		ПК 2.2.
9.	2. $NO_2^- + 2H^+ + \bar{e} \leftrightarrow NO + H_2O$ $E^0 = +1,202 B$	1	
	3. $S_4O_6^{2-} + 2\bar{e} \leftrightarrow 2S_2O_3^{2-}$ $E^0 = +0.09 \text{ B}$	_	
	4. $I_2 + 2\bar{e} \leftrightarrow 2\bar{I}$ $E^0 = +0.54 \text{ B}$		
	Молярная растворимость S в ряду		
	BaCO ₃ BaCrO ₄ BaSO ₄		
	$\Pi P = 7 \times 10^{-9}$ $\Pi P = 2 \times 10^{-10}$ $\Pi P = 1 \times 10^{-10}$		F-17.0.0
1.0			ПК 2.2.
10.	1. увеличивается	3	
	2. не изменяется		
	3. монотонно уменьшается		
	4. монотонно увеличивается		
	Наиболее растворима в воде соль:		
	1. BaCrO ₄ $\Pi P = 2 \times 10^{-10}$		ПК 2.2.
11.	2. BaCO ₃ $\Pi P = 7 \times 10^{-9}$	4	
	3. BaSO ₄ $\Pi P = 1 \times 10^{-10}$		
	4. $CaCO_3$ $\Pi P = 1 \times 10^{-8}$		
	Наиболее устойчивый комплексный ион:		
	1. [BiI ₄] K _H =7,9·10 ⁻²⁰	_	ПК 2.2.
12.	2. $[HgCl_4]^{2-}$ $K_H = 6 \times 10^{-17}$	3	
	3. $[Hgl_4]^{2-}$ $K_H = 5 \times 10^{-31}$		
L	J. [11814] KII J ^ IV		

	4. $[PbI_4]^{2-}$ $K_H = 3 \times 10^{-5}$		
13.	Наименее устойчив комплексный ион: 1. $[Ag(NH_3)_2]^+$ $K_H=6,8\cdot 10^{-8}$ 2. $[Zn(NH_3)_4]^{2+}$ $K_H=2,6\cdot 10^{-10}$ 3. $[Cu(NH_3)_4]^{2+}$ $K_H=4,6\cdot 10^{-14}$ 4. $[Zn(OH)_4]^{2-}$ $K_H=2,2\cdot 10^{-15}$	1	ПК 2.2.
14.	Для характеристики реакций осаждения используют величину: 1. K _H 2. h 3. α 4. ПР	4	OK 01.
15.	Константа равновесия для процесса $2\mathrm{Fe}^{3+}+2\mathrm{I}^-\to\mathrm{I}_2+2\mathrm{Fe}^{2+}$ $(E^o_{Fe^{3+}/Fe^{2+}}=0,77B;\ E^o_{I_2/2I^-}=0,54B)$ равна: 1. 10^5 2. 10^4 3. 10^8 4. 10^9	3	ПК 2.2.
16.	Для окисления бромид-ионов ($E^o_{Br_2/2Br^-}=1{,}08$ В) можно использовать: 1. хлорид железа(III) $E^o_{Fe^{3+}/Fe^{2+}}=0{,}77$ В 2. йод $E^o_{I_2/2I^-}=0{,}54$ В 3. нитрит натрия $E^o_{NO_2^-/NO}=0{,}99$ В 4. перманганат калия в кислой среде $E^o_{MnO_4^-/Mn^{2+}}=1{,}51$ В	4	ПК 2.2.
17.	Молярная растворимость S в ряду $ CaSO_4 \qquad CaCO_3 \qquad CaC_2O_4 \\ \Pi P = 2 \cdot 10^{-5} \qquad \Pi P = 1 \cdot 10^{-8} \qquad \Pi P = 2 \cdot 10^{-9} \\ 1. \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	3	ПК 2.2.
18.	Тип аналитической химической реакции: CuSO ₄ + 4NH ₄ OH = [Cu(NH ₃) ₄]SO ₄ + 4H ₂ O 1. окислительно-восстановительная 2. протолитическая 3. осадительная 4. комплексообразования	4	ОК 01.
19.	Наибольшей растворимостью в воде обладает соединение: 1. Ag_2S	3	ПК 2.2.
20.	Условием выпадения вещества в осадок из раствора является: 1. ПИ< ПР 2. ПИ = ПР	4	OK 01.

	$3. C_{M} < \Pi P$		
	4. ПИ > ПР		
21.	Условием растворения осадока в растворе является: 1. ПИ< ПР 2. ПИ = ПР 3. С _м < ПР 4. ПИ > ПР	1	OK 01.
22.	Число электронов n, участвующих в полуреакциях: 1. $NO_3^- + 2H^+ + n\bar{e} \leftrightarrow NO_2^- + H_2O$ 2. $Cr_2O_7^2 + 14H^+ + n\bar{e} \leftrightarrow 2Cr^{3+} + 7H_2O$ 3. $2Cu^{2+} + 2Br^- + n\bar{e} \leftrightarrow Cu_2Br_2 \downarrow$ 4. $2IO_3^- + 12H^+ + n\bar{e} \leftrightarrow I_2 + 6H_2O$ A) 1 Б) 10 В) 6 Г) 2	3 – A 4 – Б 2 – В 1 - Γ	ПК 2.2.
23.	Математическое выражение молярной растворимости имеет вид: 1. HgI_2 2. CdS 3. BiI_3 4. $Mg_3(PO_4)_2$ A) $S = \sqrt[4]{\Pi P/27}$ Б) $S = \sqrt{\Pi P}$ B) $S = \sqrt[5]{\Pi P/108}$ Γ) $S = \sqrt[3]{\Pi P/4}$	3 – A 2 – Б 4 – B 1 - Γ	OK 01.
24.	Для данной температуры произведение молярных концентраций ионов водорода и гидроксид-ионов есть величина постоянная и называется ионным воды.	произведением	OK 01.
25.	Гидроксидный показатель рОН предста-вляет отрицательный	десятичный	ОК 01.
26.	Гидролиз — это химическое взаимодействие вещества с ионами воды, сопровождающееся нарушением диссоциации воды за счет связывания ионов водорода или гидроксидионов в малодиссоциирующее соединение.	равновесия	OK 01.
27.	Буферным действием обладает раствор: 1. NH ₄ Cl + HCl 2. CH ₃ COONa + NaOH 3. CH ₃ COOH + CH ₃ COONa 4. CH ₃ COOH + CH ₃ COONH ₄	3	ОК 01.
28.	Формула расчета произведения растворимости (ПР) для малорастворимого электролита имеет вид: $1.\ AlPO_4$ $2.\ Cr(OH)_3$ $3.\ Mg(OH)_2$ $4.\ Bi_2S_3$ $A)\ 27S^4\ B)\ 4S^3\ B)\ 108S^5\ \Gamma)\ S^2$	2 - A 3 - B 4 - B $1 - \Gamma$	OK 01.
29.	В первую очередь с перманганатом калия в кислой среде (E=+1,52 B) окислится анион: 1. Cl ⁻ (+1,36 B)	3	ОК 01.

	2. Br ⁻ (+ 1,07 B) 3. SO ₃ ²⁻ (- 0,93 B) 4. C ₂ O ₄ ²⁻ (- 0,49 B)		
30.	Степень диссоциации уксусной кислоты в $0,1$ моль/дм ³ растворе равна $1,32\cdot10^{-2}$. Концентрация ацетат-ионов равна: $1.1,32\cdot10^{-2}$ $2.1,32\cdot10^{-3}$ $3.1,32\cdot10^{-4}$ $4.1,74\cdot10^{-5}$	2	ПК 2.2.

Тесты для раздела 3 «Качественный химический анализ»

Номер			
зада-	Содержание вопроса	Правильный ответ	Компетенции
РИН	Vo proposi ovo svervenosvoši prvijiho ovvisvop		
	Ко второй аналитической группе анионов относятся		
	$1. \text{ NO}_2^{-}. \text{ S}^{2-}. \text{ SO}_3^{2-}$	•	ПК 2.2.
1.	2. BO ₃ ³⁻ , C ₂ O ₄ ²⁻ , BO ₂	2	
	$3. NO_2$, $C_2O_4^2$, PO_4^3		
	$4. \text{ NO}_{2}^{-}, \text{ C}_{2}\text{O}_{4}^{-2}, \text{ S}^{2-}$		
	Нитрат серебра является групповым реагентом		
	на ионы:		ПК 2.2.
2.	1. Cl ⁻ , Br ⁻ , SCN ⁻	1	
	2. Br [−] , CH ₃ COO [−] , Γ [−]	•	
	3. Br ⁻ , SCN ⁻ , CH ₃ COO ⁻		
	4. Cl ⁻ , NO ₂ ⁻ , Br ⁻		
	Ины железа (II) в кислой среде можно		
	обнаружить:		шкээ
3.	1. пероксидом водорода 2. концентрированной серной кислотой	4	ПК 2.2.
3.	3. гексацианоферратом (II) калия	7	
	4. гексацианоферратом (III) калия		
	,		
	Для характеристики различных типов реакций		
	используют константы равновесия и другие	3 – A	
	количественные характеристики:	1 – Б	OK 01.
4	1. протолитические реакции	2 - B	011 011
	2. окислительно-восстановительные реакции	4 - Γ	
	3. реакции осаждения		
	4. реакции комплексообразования А) ПР Б) α, Ka, K _b B) E ⁰ , K _p Γ) K _н , β		
	А) ПР б) (с, Ка, К _в б) Е , К _р 1) К _н , р Аналитические реагенты взаимодействующие с	селективными	
5.	одним или несколькими ионами	CONTRACTOR	ОК 01.
3.	называются		
	Отделение катионов пятой аналитической	раствора аммиака	
6.	группы от катионо шестой группы основано на	parizopa ammuna	ОК 01.
	использовании		
	Разбавленный растворявляется	H ₂ SO ₄	пиээ
7.	групповым реагентом третьей аналитической	112004	ПК 2.2.
	группы катионов.		
	TPYTHIDI KATHOHOD.		

8.	2 моль/дм ³ раствор хлороводородной кислоты является групповым реагентом для катионов второй аналитической группы и	анионов	ОК 01.
_	первой аналитической группы. Реакция катиона аммония с гидроксид-ионом	специфической	ПК 2.2.
9. является			
10.	Кислотно-основная классификация основана на использовании в качестве групповых реагентов хлороводородной, серной кислот, гидроксида калия(натрия) и	аммония	ОК 01.
11.	Анализ смеси веществ можно провести, систематическим,и компромиссным методами.	дробным	ОК 01.
12.	Специфической реакцией на катионы калия является реакция: 1. Na ₃ [Co(NO ₂) ₆] 2. H ₂ C ₄ H ₄ O ₆ 3. K ₂ [HgJ ₄] 4. NH ₄ ClO ₄	4	ПК 2.2.
13.	Тип аналитической химической реакции: $2 \text{ CuSO}_4 + 4 \text{ KI} \rightarrow \text{Cu}_2\text{I}_2 \downarrow + \text{I}_2 + 2 \text{ K}_2\text{SO}_4$ 1. окислительно-восстановительная 2. протолитическая 3. осадительная 4. комплексообразования	1	OK 01.
14.	Растворимые аммиакаты образуют катионы: 1. Cd ²⁺ , Al ³⁺ , Zn ²⁺ 2. Ag ⁺ , Zn ²⁺ , Cu ²⁺ 3. Cd ²⁺ , Cu ²⁺ , Co ²⁺ 4. Ni ²⁺ , Hg ₂ ²⁺ , Co ²⁺	3	ПК 2.2.
15.	Способ проведения аналитической реакции на фильтровальной бумаге называется	хроматографическим	ОК 01.
16.	Ацетат-ионы в нейтральной среде можно обнаружить путем действия 1. хлорида железа (II) 2. хлорида железа (III) 3. ацетона 4. аммиака	2	ПК 2.2.
17.	Обнаружение катиона аммония можно провести в «газовой камере» с помощью: 1. гексанитритокобальтата (III) натрия 2. виннокаменной кислоты 3. гексагидроксостибата (V) калия 4. тетрайодомеркурата (II) калия в присутствии КОН	4	ПК 2.2.
18.	Наиболее сильный восстановитель: $ \begin{array}{ll} 1.\ 2\text{CO}_2 + 2\text{H}^+ + 2\bar{\text{e}} \leftrightarrow \text{H}_2\text{C}_2\text{O}_4 & \text{E}^\circ\text{=}-0,49\ \text{B} \\ 2.\ \text{NO}_2^- + 2\text{H}^+ + \bar{\text{e}} \leftrightarrow \text{NO} + \text{H}_2\text{O} & \text{E}^\circ\text{=}+1,202\ \text{B} \\ 3.\ \text{S}_4\text{O}_6^{2^-} + 2\bar{\text{e}} \leftrightarrow 2\text{S}_2\text{O}_3^{2^-} & \text{E}^\circ\text{=}+0,09\ \text{B} \\ 4.\ \text{I}_2 + 2\bar{\text{e}} \leftrightarrow 2\text{I}^- & \text{E}^\circ\text{=}+0,54\ \text{B} \\ \end{array} $	1	ПК 2.2.

19.	Групповым реагентом катионов II		
	аналитической группы является:	3	ПК 2.2.
	1. гидроксид натрия		
	2. гидроксид аммония		
	3. хлороводородная кислота		
	4. серная кислота		

Ситуационные задачи

Ситуационные задачи выдаются обучающимся при изучении темы 3.3 «Анализ вещества неизвестного состава». Каждый обучающийся получает вещество, в состав которого входят изученные ранее катионы и анионы. На основании результатов предварительного анализа, обнаруженного ионного состава обучающися должен составить химическую форму вещества. Результаты выполнгния ситуационной задачи оформляются обучающимся в форме протокола.

Протокол

Тема: «Качественный анализ вещества неизвестного состава»

Дата выполнения:

ФИО обучающегося:

Результаты предварительного анализа:

Ход анализа катионов: написать уравнения аналитических реакций в последовательности их выполнения в ходе анализа, указать способы выполнения реакций, условия выполнения и аналитический сигнал.

Ход анализа анионов:

- 1. приготовление «содовой вытяжки»;
- 2. написать уравнения аналитических реакций в последовательности их выполнения в ходе дробного анализа анионов, указать способы выполнения реакций, условия выполнения и аналитический сигнал.

Результаты выполнения ситуационной задачи

Группа ионов	Обнаруженные	Оценка	Подпись
	ионы	преподавателя	преподавателя
группа катиона			
группа аниона			
химическая формула соединения			