Документ подписан простой электронной подписью Информация о владельце:

ФИО: Лужанин Владимий Егике РЕРСТВО ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: исполняющий обязанности ректора

Дата подписания: 02.022 сударственное бюджетное образовательное учреждение высшего образования

Уникальный программный ключ: «Пермская государственная фармацевтическая академия»

4f6042f92f26818253a6672056464<mark>Минис</mark>ферства здравоохранения Российской Федерации

Кафедра общей и органической химии

(наименование кафедры)

УТВЕРЖДЕНА решением кафедры Протокол от «03» июля 2017 г. № 9

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

ФТД.1 Современные методы физико-химического анализа

(индекс, наименование дисциплины, в соответствии с учебным планом)

ФТД.1 СМФХА				
(индекс, краткое наименование дисциплины)				
19.03.01 Биотехнология				
(код, наименование направления подготовки (специальности	ı)			
Фармацевтическая биотехнология				
(направленность(и) (профиль (и)/специализация(ии)				
Бакалавр				
(квалификация)				
Очная				

Год набора – 2018

(форма(ы) обучения)

Пермь, 2017 г.

Автор(ы)-составитель(и):

доктор фармацевт. наук., проф. каф. общей и органической химии (ученая степень и(или) ученое звание, должность) (наименование кафедры) Игидов Н.М..

(Ф.И.О.)

заведующий кафедрой

общей и органической химии Гейн В.Л. д-р. хим. наук., профессор (Ф.И.О)

(наименование кафедры)

(ученая степень и(или) ученое звание)

СОДЕРЖАНИЕ

1.	Ми результатами освоения образовательной программы	
2.	Объем и место дисциплины в структуре ОПОП	∠
3.	Содержание и структура дисциплины	5
4.	Фонд оценочных средств по дисциплине	6
5.	Методические материалы для обучающихся по освоению дисциплины	8
6	Учебная литература для обучающихся по дисциплине	
7.	информационные справочные системы	8.

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения программы

В результате освоения дисциплины у студентов должны быть:

- сформированы знания: основ качественного и количественного определения органических веществ с использованием физико-химических методов анализа: хроматографии (ГЖХ, ВЭЖХ, ТСХ), спектральных методов (УФ-, ИК-, ЯМР-спектроскопии), электронного микроскопирования, а также теоретического представления молекулярных констант: спиновое число, валентные, продольные колебания, поляризация, преобразование Фурье и др.; методов ионизации, разделения и регистрации ионов, интерпретацию масс-спектров.
- сформированы умения: подготовка пробы для анализов объектов исследования, применения оптимальной методики для проведения качественного и/или количественного анализа сырья, материалов или готовой продукции с целью идентификации и контроля чистоты состава; решения профессиональных задач, направленных на выбор оптимального подхода физико-химического исследования; владения методами интерпретации полученных первичных показателей с приборов.
- сформированы навыки: создания проб для физико-химических методов анализа, проведения некоторых видов анализа (ИК-, УФ-спектроскопии), анализа полученных спектральных данных с приборов: ИК-спектры, УФ-спектры ЯМР ¹Н-спектры, масс-спектры, и др.

2. Объем и место дисциплины в структуре ОПОП

Дисциплина $\Phi T \underline{\mathcal{I}}.1$ «Современные методы физико-химического анализа органических веществ» осваивается обучающимися на 3 курсе (6 семестр) в соответствии с учебным планом, общей трудоёмкостью 108 часов / 3 зачётные единицы (3. е.).

Количество академических часов, выделенных на контактную работу с преподавателем -54 часа, из них лекции -20 часов, лабораторные занятия -34 часа, зачет, на самостоятельную работу обучающихся -54 часа.

Форма промежуточной аттестации в соответствии с учебным планом – зачет. Дисциплина реализуется после изучения следующих дисциплин на 2 курсе (3 и 4 семестр):

3. Содержание и структура дисциплины

3.1. Структура дисциплины

№ п/п	Наименование	Объем дисциплины, час.	Форма те-

	разделов, тем	Всего	Контактная ра- бота обучающих- ся с преподава- телем по видам учебных занятий		СР	кущего кон- троля успе- ваемости, промежуточ- ной аттеста-	
			Л	ЛЗ	П3		ции
	ая форма обучения						
	естр № 6		Т	T	T	1	T
Раздел 1.	Хроматографические методы анализа	46	6	15		25	С, КР
Тема 1.1.	Введение. Пространственная конфигурация органической молекулы и её свойства в растворах	8	2	3		3	С
Тема 1.2.	Плоскостная хроматография	14	2	6		6	С
Тема 1.3.	Колоночная хроматография	24	2	6		16	C, KP
Раздел 2	Спектральные методы анализа	62	14	19		29	C
Тема 2.1.	Спектральные параметры полос поглощения. ИК-спектроскопия	8	2	3		3	С
Тема 2.2.	Молекулярная и абсорбционная спектроскопия в видимой и УФобласти электромагнитных излучений	8	2	3		3	С
Тема 2.3.	ЯМР-спектроскопия	16	4	6		6	С
Тема 2.4.	Масс-спектрометрия	10	4	3		3	С
Тема 2.5.	Рентгеноструктурный анализ органических соединений	20	2	4		14	C, KP
Промежу	Промежуточная аттестация						Зачет
Всего:		108	20	34		54	

Примечание: формы текущего контроля успеваемости: собеседование (С), контрольная работа (КР).

3.2. Содержание дисциплины.

- Раздел 1. Хроматографические методы анализа
- Тема 1.1. Введение. Пространственная конфигурация органической молекулы и её свойства в растворах. Полярность молекулы, ионизация раствора. Константы диссоциации.
- Тема 1.2. Плоскостная хроматография. Стадии хроматографического процесса, материалы и реагенты, применяемые в плоскостной хроматографии. Виды плоскостной хроматографии. Основные характеристики разделения веществ в плоскостной хроматографии.
- Тема 1.3. Колоночная хроматография. Теоретические основы газовой хроматографии, жидкостной хроматографии (ВЭЖХ). Параметры удерживания и основные характеристики разделения веществ в колоночной газовой и жидкостной хроматографии.

Раздел 2. Спектральные методы анализа.

- Тема 2.1. Спектральные параметры полос поглощения. ИК-спектроскопия. Валентные колебания. Колебания двухатомной молекулы, групповые частоты и интерпретация спектров.
- Тема 2.2. Молекулярная и абсорбционная спектроскопия в видимой и УФ-области электромагнитных излучений. Характеристика спектрофотометрического определения, Оптимальные условия фотометрического определения. Количественный анализ абсорбционными методами.
- Тема 2.3. ЯМР-спектроскопия. Принцип метода. Характеристика работы приборов, расшифровка и анализ данных спектров. Границы применения метода.
- Тема 2.4. Масс-спектрометрия. Виды определений массы молекулы, принципы методов проведения анализа. Ионизация молекулы. Расшифровка и анализ спектральных данных.
- Тема 2.5. Рентгеноструктурный анализ органических соединений. Определение абсолютной структуры органического вещества. Принцип методов работы приборов. Расшифровка и анализ полученных данных с приборов.

4. Фонд оценочных средств по дисциплине

- 4.1. Формы и материалы текущего контроля.
- 4.1.1. В ходе реализации дисциплины ФТД.1 «Современные методы физико-химического анализа органических веществ» используются следующие формы текущего контроля успеваемости обучающихся:
- 4.1.2. Материалы текущего контроля успеваемости.

Пример собеседования по теме 1.1.

- 1. Объясните, какие функциональные группы будут иметь заряд в полярных растворителях.
- 2. Чем обуславливаются водородные связи в растворах и в твёрдом состоянии у анализируемых вешеств?
- 3. Какие молекулы более подвижны в растворах и различных средах исходя из их молекулярной массы и заряда?

Пример варианта контрольной работы по разделу 1.

- 1. Нарисуйте формулу глутаминовой аминокислоты, укажите заряд молекулы. Предположите растворитель, где она пройдёт с максимальным Rf.
- 2. Объясните принцип работы высокоэффективной жидкостной хроматографии (ВЭЖХ) и границы его применимости.
- .4.1.3. Шкала оценивания для текущего контроля.

Собеседование:

- зачтено написание протокола без ошибок или с допущенными неточностями, уверенно исправленными после дополнительных вопросов, правильно написаны реакции и отдельные формулы; правильные в целом действия по применению знаний для решения профессиональных задач;
- не зачтено несоблюдение техники выполнения лабораторной работы, либо наличие грубых ошибок при оформлении протокола исследования, непонимание сущности излагаемого вопроса, реакции написаны с ошибками, либо в формулах написаны ошибки, неумение применять знания

для решения профессиональных задач, неуверенность и неточность ответов на дополнительные и наводящие вопросы.

Контрольная работа:

- оценка «отлично»: изложенный материал фактически верен, наличие необходимых схем и реакций с пояснениями к ним, что показывает глубокие, исчерпывающие знания в объеме утвержденной программы дисциплины в соответствии с поставленными программой курса целями и задачами обучения; грамотное и логически стройное изложение материала при письменном ответе на вопросы;
- оценка «хорошо»: наличие твердых и достаточно полных знаний в объеме утвержденной программы дисциплины в соответствии с целями обучения, правильные действия по применению полученных знаний, умений для решения поставленных задач, четкое изложение материала, наличие всех необходимых схем и реакции в письменном ответе; допускаются отдельные логические и стилистические погрешности;
- оценка «удовлетворительно» наличие твердых знаний в объеме утвержденной программы в соответствии с целями изучения, изложение ответов с отдельными ошибками, наличие необходимых схем и реакций в неполном объёме с сохранением логики; правильные в целом действия по применению знаний для решения профессиональных задач;
- оценка «неудовлетворительно» ответы не связаны с вопросами, наличие грубых ошибок в ответе, отсутствие необходимых схем и реакций, непонимание сущности излагаемого вопроса, неумение применять знания для решения профессиональных задач.
- 4.2. Формы и материалы промежуточной аттестации.
- 4.2.1. Промежуточная аттестация проводится в форме зачета
- 4.2.2. Оценочные средства для промежуточной аттестации.

Пример билета на зачете:

Билет № 1

- 1. Спектральная задача: предположите, какое вещество представлено на данном спектре, укажите все его пики и функциональные группы.
- 2. Опишите принцип работы определения ковалентно-связанных ионов металлов в структуре органических веществ

4.2.3. Шкала оценивания.

- зачтено наличие твердых знаний в объеме утвержденной программы в соответствии с целями изучения, изложение ответов с отдельными ошибками, уверенно исправленными после дополнительных вопросов; правильные в целом действия по применению знаний для решения профессиональных задач;
- не зачтено ответы не связаны с вопросами, наличие грубых ошибок в ответе, непонимание сущности излагаемого вопроса, неумение применять знания для решения профессиональных задач, неуверенность и неточность ответов на дополнительные и наводящие вопросы.

5. Методические материалы по освоению дисциплины

Методические материалы для обучающихся по дисциплине ФТД.1 «Современные методы физикохимического анализа» (полный комплект находится на кафедре общей и органической химии).

6. Учебная литература для обучающихся по дисциплине

- 6.1. Основная литература
- 1. Лебухов В.И., Окара А.И., Павлюченкова Л.П. Физико-химические методы исследования. Издво Лань, 2017. 480 с.
- 2. Журкин О.П., Имашев У.Б. Физико-химические методы анализа органических соединений. Изво Уфимского гос. нефтяного технического ун-та, 2009. 211 с.
- 3. Аналитическая химия. Химические методы анализа: Учеб.пос. / А.И. Жебентяев, А.К. Жерносек и др. -2-е изд., стер. -М.: НИЦ ИНФРА-М; Мн.: Нов. знание, 2014. -542 с.: ил.; 60х90 1/16. -(Высш. обр.: Бакалавр.). (Электронный ресурс:-URL: http://znanium.com/catalog.php?bookinfo=419626).
- 4. Физико-химические методы исследования [Электронный ресурс]: Учебник для бакалавров / В. И. Криштафович, Д. В. Криштафович, Н. В. Еремеева. —М.: Издательско-торговая корпорация «Дашков и К°», 2015. —208 с. -ISBN 978-5-394-02417-7 Режим доступа: http://znanium.com/catalog.php?bookinfo=513811.
- 5. http://femb.ru/femb/pharmacopea13.php[Электронный ресурс]
- 6. https://grls.rosminzdrav.ru/Default.aspx [Электронный ресурс]

7. Материально-техническая база, информационные технологии, программное обеспечение и информационные справочные системы

Материально-техническое обеспечение: учебная аудитория № 70, общей площадью 84 м², укомплектована специализированной мебелью, вытяжным шкафом, проточным водоснабжением, техническими средствами обучения, а также лабораторным оборудованием: титровальные установки, фотоэлектроколориметр КФК-3, центрифуга, баня водяная с электронагревателем ЛПБ-ТБ-4, определитель температуры плавления ПТП (М), шкаф сушильный ШСС-80. Лаборатория оборудована мультимедийным комплексом и экраном для демонстрации слайдовых презентаций учебного материала дисциплины, наборы таблиц для учебного процесса, выполненные на бумажном носителе (ватмане).

Компьютерная техника и мультимедийные средства: ноутбук HP, проектор Epson EMP-X3, экран, ПК (Системный блок USN Intel BOX Core 2 Duo E6850), мониторы (19" TFT Acer 1916Cs siliverblack, ASUS 17" VB172D).

АННОТАЦИЯ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

ФТД.1 «Современные методы физико-химического анализа»

Код и наименование направления подготовки, профиля: 19.03.01 Биотехнология.

Квалификация (степень) выпускника: бакалавр

Форма обучения: очная

В результате освоения дисциплины у обучающихся должны быть:

– сформированы знания: основ качественного и количественного определения органических веществ с использованием физико-химических методов анализа: хроматографии (ГЖХ, ВЭЖХ,

ТСХ), спектральных методов (УФ-, ИК-, ЯМР-спектроскопии), электронного микроскопирования, а также теоретического представления молекулярных констант: спиновое число, валентные, продольые колебания, поляризация, преобразование Фурье и др.; методов ионизации, разделения и регистрации ионов, интерпретацию масс-спектров.

- сформированы умения: подготовка пробы для анализов объектов исследования, применения оптимальной методики для проведения качественного и/или количественного анализа сырья, материалов или готовой продукции с целью идентификации и контроля чистоты состава; решения профессиональных задач, направленных на выбор оптимального подхода физико-химического исследования; владения методами интерпретации полученных первичных показателей с приборов.
- сформированы навыки: создания проб для физико-химических методов анализа, проведения некоторых видов анализа (ИК-, УФ-спектроскопии), анализа полученных спектральных данных с приборов: ИК-спектры, УФ-спектры ЯМР ¹Н-спектры, масс-спектры, и др.

Объем и место дисциплины в структуре ОПОП:

Дисциплина ФТД.1 «Современные методы физико-химического анализа органических веществ» осваивается обучающимися на 3 курсе (6 семестр) в соответствии с учебным планом, общей трудоёмкостью 108 часов / 3 зачётные единицы (3. е.).

Количество академических часов, выделенных на контактную работу с преподавателем -54 часа из них лекции -20 часов, лабораторные занятия -34 часа, зачет, на самостоятельную работу обучающихся -54 часа.

Форма промежуточной аттестации в соответствии с учебным планом – зачет.

План дисциплины:

- Раздел 1. Хроматографические методы анализа
- Тема 1.1. Введение. Пространственная конфигурация органической молекулы и её свойства в растворах.
- Тема 1.2. Плоскостная хроматография.
- Тема 1.3. Колоночная хроматография.
- Раздел 2. Спектральные методы анализа.
- Тема 2.1. Спектральные параметры полос поглощения. ИК-спектроскопия.
- Тема 2.2. Молекулярная и абсорбционная спектроскопия в видимой и УФ-области электромагнитных излучений.
- Тема 2.3. ЯМР-спектроскопия.

- Тема 2.4. Масс-спектрометрия.
- Тема 2.5. Рентгеноструктурный анализ органических соединений.

Формы текущего контроля и промежуточной аттестации:

Текущий контроль дисциплины состоит из собеседования, контрольной работы. Форма промежуточной аттестации – зачет.