Документ подписан простой электронной подписью Информация о владельце:

ФИО: Лужанин Владим и при в терство ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Должность: исполняющий обязанности ректора

Дата пфедеральное учреждение высшего образования

Уникальный программный ключ: «Пермская государственная фармацевтическая академия»

4f6042f92f26818253a667205646475**Minhue**терства здравоохранения Российской Федерации

Кафедра аналитической химии

Полное наименование кафедры

УТВЕРЖДЕНЫ

решением кафедры

Протокол от «28» июня 2018 г. № 13

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ПО ДИСЦИПЛИНЕ

Б1.В.ОД.2 Аналитическая химия

Шифр и полное наименование дисциплины

Направление подготовки: 19.03.01 Биотехнология **Профиль программы:** Фармацевтическая биотехнология

Год набора: 2019

Пермь, 2018 г.

1. Рекомендации по подготовке к лекционным занятиям

Изучение дисциплины требует систематического и последовательного накопления знаний, следовательно, пропуски отдельных тем не позволяют глубоко освоить предмет. Именно поэтому контроль над систематической работой обучающихся всегда находится в центре внимания кафедры.

Обучающимся необходимо:

- перед каждой лекцией просматривать рабочую программу дисциплины, что позволит сэкономить время на записывание темы лекции, ее основных вопросов, рекомендуемой литературы;
- перед очередной лекцией необходимо просмотреть по конспекту материал предыдущей лекции; при затруднениях в восприятии материала следует обратиться к основным литературным источникам; если разобраться в материале не удается, то необходимо обратиться к преподавателю.

2. Рекомендации по подготовке к лабораторным занятиям

Обучающимся следует:

- приносить с собой рекомендованную преподавателем литературу к каждому занятию;
- до очередного лабораторного занятия по рекомендованным литературным источникам проработать теоретический материал соответствующей темы и сделать задания для подготовки к лабораторному занятию;
- при подготовке к лабораторным занятиям следует использовать не только лекции, но и учебную литературу;
- в начале занятий задать преподавателю вопросы по материалу, вызвавшему затруднения в его понимании.

Вопросы для самопроверки

Раздел 1. Теоретические основы химического анализа и качественный химический анализ

Тема 1. «Основные понятия и термины химического анализа. Классификация, методы качественного анализа. Теория растворов, химическое равновесие и закон действующих масс. Константы равновесия и их значение в анализе. Гетерогенное равновесие и закон действующих масс в химическом анализе»

- 1. Предмет, цели и задачи аналитической химии. Методы анализа. Химический анализ.
- 2. Аналитические реакции и реагенты, их классификация и характеристика.
- 3. Техника выполнения аналитических реакций.
- 4. Качественный химический анализ неорганических соединений.
- 5. Дробный, систематический и компромиссный анализы неорганических соединений.
- 6. Кислотно-основная классификация катионов.
- 7. Сильные и слабые электролиты. Активность ионов и ионная сила растворов.
- 8. Химическое равновесие и закон действующих масс.
- 9. Константа равновесия и ее тип.
- 10. Значение закона действующих масс для химического анализа.
- 11. Классификация аналитических реакций для неорганических соединений в химическом анализе.
 - 12. Термодинамическое и концентрационное произведение растворимости (ПР).

- 13. Растворимость, способы ее выражения.
- 14. Условия образования и растворения малорастворимых электролитов. Факторы, влияющие на растворимость и полноту осаждения.
- <u>Тема 2. «Образование и растворение осадков. Растворимость и произведение растворимости. Протеолитическое равновесие и закон действующих масс в химическом анализе.</u> Диссоциация сильных и слабых электролитов, автопротолиз воды»
 - 1. Дробное осаждение.
 - 2. Перевод одних малорастворимых осадков в другие (переосаждение).
 - 3. Применение реакций осаждения в химическом анализе.
- 4. Равновесие в растворах кислот и оснований. Константы кислотности и основности, их значение.
 - 5. Автопротолиз воды. Ионное произведение воды, рН и рОН растворов.
 - 6. Равновесие в растворах амфолитов.
 - 7. Понятие о буферных растворах.
 - 8. Равновесие в растворах гидролизующихся солей.
 - 9. Применение протолитических реакций в анализе.

<u>Тема 3. «Закон действующих масс в растворах комплексных соединений и окислительно-восстановительных реакциях»</u>

- 1. Химико-аналитические свойства комплексных соединений и использование их в химическом анализе.
 - 2. Факторы, влияющие на возможность и полноту комплексообразования.
 - 3. Разрушение комплексных соединений.
 - 4. Окислительно-восстановительные реакции и направление их протекания.
- 5. Факторы, влияющие на направление протекания окислительно-восстановительных реакций (концентрация, температура, pH среды, присутствие осадителей и комплексообразующих соединений).
- 6. Глубина протекания и константа равновесия окислительно-восстановительных реакций.
- 7. Факторы, влияющие на скорость протекания окислительно-восстановительных реакций.
 - 8. Использование окислительно-восстановительных реакций в химическом анализе.

Практические (лабораторные) работы

Реакции обнаружения катионов I-VI аналитических групп и анионов I-IV аналитических групп, способы их выполнения, аналитические сигналы. Обнаружение карбонат-ионов в присутствии сульфит- и тиосульфат- ионов. Обнаружение хлорид-, бромид- и иодид-ионов при совместном присутствии. Обнаружение иодид- и ацетат- ионов при совместном присутствии.

Раздел 2. Количественный химический анализ

<u>Тема 4. «Основы количественного химического анализа.</u> <u>Гравиметрический метод анализа.</u> <u>Титриметрический анализ.</u> Основные понятия. Титрованные растворы»

- 1. Определение и варианты гравиметрического анализа. Область применения гравиметрии.
 - 2. Основные операции, используемые в гравиметрическом анализе.

- 3. Формулы, с использованием которых проводятся вычисления в гравиметрическом анализе.
 - 4. Требованиям к осадкам в гравиметрическом анализе.
 - 5. Условия осаждения кристаллических и аморфных осадков.
- 6. Определение терминов: точная навеска, гравиметрическая форма, гравиметрический фактор. Формула расчета гравиметрического фактора.
 - 7. Определение титриметрического анализа. Его достоинства и недостатки.
 - 8. Классификация методов титриметрического анализа.
 - 9. Точка эквивалентности и конечная точка титрования. Их определение.
 - 10. Титр раствора и титриметрический фактор пересчета. Их определение.
- 11. Стандартные и стандартизированные растворы. Требования к стандартным веществам.

Тема 5. «Метод кислотно-основного титрования (нейтрализации). Методы окислительновосстановительного титрования»

- 1. Определение кислотно-основного титрования. Основные реакции метода.
- 2. Стандартные вещества, используемые в методе кислотно-основного титрования.
- 3. Стандартизация титрантов в кислотно-основном титровании.
- 4. Кривые титрования. Применение кислотно-основного титрования.
- 5. Кислотно-основные индикаторы. Правило выбора индикатора.
- 6. Варианты кислотно-основного титрования.
- 7. Достоинства и недостатки кислотно-основного титрования.
- 8. Классификация титриметрических методов анализа, основанных на использовании окислительно-восстановительных реакций.
 - 9. Стандартный и реальный окислительно-восстановительный потенциал.
 - 10. Направление протекания реакции окисления-восстановления.
 - 11. Кривые окислительно-восстановительного титрования.
- 12. Способы визуальной индикации конечной точки титрования в методах окислительно-восстановительного титрования. Редокс-индикаторы. Классификация. Принцип выбора индикатора.
- 13. Электродный потенциал. Уравнение Нернста. Полнота (глубина) протекания реакции окисления-восстановления.
- 14. Фактор эквивалентности и молярная масса эквивалента в методах окислительновосстановительного титрования.

<u>Тема 6.</u> «Перманганатометрия. Йодометрия. Броматометрия. Нитритометрия»

- 1. Основное уравнение перманганатометрического метода.
- 2. Стандартизация титранта.
- 3. Круг веществ, определяемых перманганатометрическим методом.
- 4. Достоинства и недостатки перманганатометрического титрования.
- 5. Основное уравнение иодометрического метода.
- 6. Стандартизация титрованных растворов.
- 7. Варианты титрования.
- 8. Определение окислителей и восстановителей.
- 9. Примеры использования иодометрического титрования в анализе лекарственных средств.
 - 10. Бромо-, броматометрия. Основное уравнение броматометрического метода.
 - 11. Круг веществ, определяемых броматометрическим методом.
 - 12. Основное уравнение нитритометрии.
 - 13. Индикаторы, применяемые в нитритометрическом титровании.
 - 14. Основные условия нитритометрических определений. Круг определяемых веществ.

<u>Тема 7. «Методы комплексиметрического титрования. Комплексонометрия. Осадительное титрование. Аргентометрия»</u>

- 1. Классификация методов комплексиметрического титрования.
- 2. Комплексонометрия. Основное уравнение комплексонометрии.
- 3. Комплексоны. Этилендиаминтетрауксусная кислота и ее натриевая соль.
- 4. Индикаторы комплексонометрического титрования, их характеристика (специфические и металлохромные индикаторы, pH-индикаторы).
 - 5. Реакции комплексообразования ЭДТА с ионами металлов.
- 6. Титрованный раствор, используемый в комплексонометрии. Стандартизация титранта.
 - 7. Варианты комплексонометрического титрования. Примеры определяемых веществ.

Практические (лабораторные) работы

определение тетрабората натрия, гидрокарбоната натрия методом кислотно-основного титрования;

определение борной кислоты методом кислотно-основного титрования;

определение уксусной кислоты методом кислотно-основного титрования;

определение оксида кальция методом кислотно-основного титрования;

определение гидроксида и карбоната натрия при совместном присутствии методом кислотно-основного титрования;

определение салицилата натрия методами кислотно-основного и окислительновосстановительного титрования;

определение пероксида водорода методами окислительно-восстановительного титрования; определение стрептоцида методами окислительно-восстановительного титрования;

определение хлорида натрия аргентометрическим методом;

определение йодида калия аргентометрическим методом;

определение бромида калия аргентометрическим методом;

определение сульфата меди методами окислительно-восстановительного и комплексонометрического титрования;

определение хлорида кальция методами аргентометрии и комплексонометрии.

Тема 8. «Оптические методы анализа. Фотометрия. Рефрактометрия»

- 1. Определение оптических методов. Классификация.
- 2. Фотометрический анализа.
- 3. Основные законы поглощения электромагнитного излучения. Основное уравнение фотометрического анализа.
 - 4. Рефрактометрия.
 - 5. Основные формулы и способы расчета содержания веществ.

<u>Тема 9. «Электрохимические методы анализа. Потенциометрия. Полярография.</u> <u>Амперометрическое титрование. Кулонометрия</u>»

- 1. Определение электрохимических методов анализа. Классификация.
- 2. Потенциометрия. Стандартный и равновесный электродный потенциалы.
- 3. Амперометрия. Аналитический сигнал в методе инверсионной амперометрии.
- 4. Полярография. Полярограмма. Электроды сравнения.
- 15. Кулонометрия. Аналитический сигнал в кулонометрии.
- 16. Область применения электрохимических методов анализа.

<u>Тема 10. «Хроматографические методы анализа. Ионообменная, тонкослойная, газовая и высокоэффективная жидкостная хроматография»</u>

- 1. Хроматография. Определение. Классификация.
- 2. Ионообменная хроматография. Техника выполнения. Расчет результатов анализа.
- 3. Тонкослойная хроматография. Техника выполнения. Расчет коэффициентов подвижности.
 - 4. Газовая хроматография. Оборудование. Принципиальная схема хроматографа.
 - 5. Требования, предъявляются к веществам подвижной фазы.
 - 6. Типы колонок. Детекторы в газовой хроматографии.
 - 7. Идентификация веществ и количественный анализ в газовой хроматографии.
- 8. Высокоэффективная жидкостная хроматография. Принципиальная схема жидкостного хроматографа. Подвижная и неподвижная фазы. Область применения высокоэффективной жидкостной хроматографии.

Практические (лабораторные) работы

Фотометрическое определение:

массовой доли соли кобальта (II) в растворе;

массовой доли салицилата натрия в растворе;

массовой доли хрома (III) и марганца (II) в растворе при совместном присутствии;

Рефрактометрическое определение:

массовой доли вещества в растворе (MgSO₄, NaBr, NaCl, CaCl₂, KI, глюкозы) по калибровочному графику и рефрактометрическому фактору;

массовой доли компонентов в двухкомпонентных смесях (хлорид натрия-глюкоза).

Потенциометрическое определение массовой доли вещества в растворе:

- а) нитритометрическое определение новокаина гидрохлорида;
- б) иодометрическое определение тиосульфата натрия;
- в) комплексонометрическое определение хлорида железа (III).

Потенциометрическое титрование при анализе смесей:

- а) алкалиметрическое определение смеси HCl + H₃BO₃
- б) ацидиметрическое определение смеси NaOH + NaHCO₃

Определение массовой доли CuSO₄ в растворе методом ионообменной хроматографии.

3. Рекомендации по решению расчетных задач

Для решения статистических расчетных задач целесообразно построить алгоритм их решения. Желательно пользоваться калькулятором, так как статистические вычисления сложно проводить вручную.

Обучающемуся следует:

- 1. Упорядочить исходные данные, записав их по определенной (заданной) форме.
- 2. При нехватке данных их можно вычислить, используя математические и статистические формулы.
- 3. Провести расчеты и найти искомую величину с использованием уже упорядоченных значений. При расчётах всегда следует пользоваться статистическими формулами (средние, коэффициенты, индексы, показатели). Все формулы можно найти в теоретических источниках вместе с подробными объяснениями.